|
您好,歡迎回來(lái)
|
張巖,張巖,男,漢族,1972年5月出生于陜西韓城,祖籍吉林洮南市。現(xiàn)任首都師范大學(xué)物理系教授,博士生導(dǎo)師,系主任;北京市超材料與器件重點(diǎn)實(shí)驗(yàn)室主任;哈爾濱工業(yè)大學(xué)兼職教授,博士生導(dǎo)師。
教育及工作經(jīng)歷:
1990.09-1994.07 哈爾濱工業(yè)大學(xué)應(yīng)用物理系,本科。
1994.09-1996.07 哈爾濱工業(yè)大學(xué)應(yīng)用物理系,碩士研究生。
1996.09-1999.07 中國(guó)科學(xué)院物理研究所,博士研究生。
1999.08-2001.08 日本山形大學(xué)工學(xué)部,日本學(xué)術(shù)振興會(huì)特別研究員。
2001.10-2002.07 香港理工大學(xué)電機(jī)工程系,副研究員。
2002.08-2003.10 德國(guó)斯圖加特大學(xué)應(yīng)用光學(xué)研究所,洪堡學(xué)者。
2003.11-今 首都師范大學(xué)物理系,教授。
2004.04-05 香港科技大學(xué)物理系,訪問(wèn)學(xué)者。
2005.04-今 哈爾濱工業(yè)大學(xué)兼職教授,博士生導(dǎo)師。
2005.11 日本山形大學(xué)訪問(wèn)學(xué)者。
2007.09-10 美國(guó)倫斯特理工大學(xué)訪問(wèn)教授。
2009.02-08 德國(guó)康斯坦茲大學(xué)訪問(wèn)教授。
科研經(jīng)歷:
1994-1996年,同碩士導(dǎo)師劉樹(shù)田教授一起在國(guó)內(nèi)率先開(kāi)展光學(xué)分?jǐn)?shù)傅立葉變換的研究。提出了可以任意改變分?jǐn)?shù)傅立葉變換尺度因子的光學(xué)實(shí)現(xiàn)結(jié)構(gòu)以及實(shí)現(xiàn)光學(xué)分?jǐn)?shù)傅立葉變換的級(jí)聯(lián)條件,主要工作發(fā)表在Opt. Lett.上,并被多次引用,為利用光學(xué)分?jǐn)?shù)傅立葉變換進(jìn)行信息處理鋪平了道路。
1996-1999年,在中科院物理所攻讀博士學(xué)位,在導(dǎo)師楊國(guó)楨院士和顧本源研究員的指導(dǎo)下,開(kāi)拓了分?jǐn)?shù)傅立葉變換在光學(xué)信息處理領(lǐng)域中的應(yīng)用。將分?jǐn)?shù)傅立葉變換同楊-顧算法相結(jié)合,在分?jǐn)?shù)傅立葉變換域?qū)崿F(xiàn)光束整形;提出了可實(shí)現(xiàn)Radon-Wigner展示的新結(jié)構(gòu);提出了分?jǐn)?shù)蓋伯變換等一系列新的變換;提出了可實(shí)現(xiàn)旋轉(zhuǎn)不變平移變的光學(xué)相關(guān)器;提出了自分?jǐn)?shù)漢克爾函數(shù)的概念,并研究了它的性質(zhì);有關(guān)光學(xué)分?jǐn)?shù)傅立葉變換及其在光學(xué)信息領(lǐng)域中的應(yīng)用研究,得到了同行專(zhuān)家的好評(píng),中國(guó)光學(xué)學(xué)會(huì)前任理事長(zhǎng),南開(kāi)大學(xué)母國(guó)光院士對(duì)這一工作的評(píng)價(jià)是:“該項(xiàng)成果,具有創(chuàng)新性的學(xué)術(shù)意義和潛在的應(yīng)用前景,得到了國(guó)內(nèi)外的同行專(zhuān)家的好評(píng),并被多次引用,相關(guān)內(nèi)容已形成現(xiàn)代信息處理的重要新分支,是國(guó)內(nèi)在現(xiàn)代光學(xué)技術(shù)科學(xué)領(lǐng)域研究工作中的優(yōu)秀成果,具有國(guó)際先進(jìn)水平”。
此期間還從事非線性光學(xué)超晶格設(shè)計(jì)研究,將周期極化鈮酸鋰設(shè)計(jì)的概念從準(zhǔn)周期推廣到非周期,提出了相應(yīng)的優(yōu)化設(shè)計(jì)方法,并應(yīng)用在二次諧波生成,三次諧波產(chǎn)生和參量震蕩中,為新頻率的產(chǎn)生提供了新途徑,實(shí)驗(yàn)結(jié)果驗(yàn)證了理論的正確性。
1999-2001年,在日本學(xué)術(shù)振興會(huì)博士后基金的資助下,在日本山形大學(xué)工學(xué)部從事生物成像研究。提出了多種提高光學(xué)相干層析分辨率的方法,主要工作發(fā)表在Opt. Lett.上,得到了國(guó)際同行的重視,并被應(yīng)用在實(shí)際的儀器上。
2001-2002年,在香港理工大學(xué)電子工程系從事光纖氣體傳感器研究。將激光內(nèi)腔光譜儀同光纖光學(xué)相結(jié)合,提出了高靈敏度的光纖氣體傳感器,靈敏度提高了100倍,并提出了多種復(fù)用方法,推進(jìn)了光纖內(nèi)腔傳感器的應(yīng)用。這部分內(nèi)容作為科學(xué)出版社出版的“光纖傳感技術(shù)新進(jìn)展”一書(shū)中的一章,已經(jīng)出版發(fā)行。
2002-2003年,在德國(guó)洪堡基金的資助下在德國(guó)斯圖加特大學(xué)應(yīng)用光學(xué)研究所任洪堡研究員,從事數(shù)字全息重建算法的研究,提出了利用相位恢復(fù)算法來(lái)進(jìn)行數(shù)字全息重建的新方案,引起了同行的重視和肯定。這部分內(nèi)容作為美國(guó)Nova Science出版社的新書(shū) “New Developments in Lasers and Electro-Optics Research”中的一章,已經(jīng)出版發(fā)行。
2003年-今 在首都師范大學(xué)物理系工作。分別獲得了北京市科技新星計(jì)劃,北京市留學(xué)人員擇優(yōu)資助等人才項(xiàng)目的資助。作為北京市“太赫茲波譜與成像”創(chuàng)新團(tuán)隊(duì)的核心成員,主要從事太赫茲波譜與成像,太赫茲波段表面等離子體光學(xué)和微納光電子器件設(shè)計(jì)研究。在太赫茲成像方面提出了多波長(zhǎng)成像,偏振成像,實(shí)時(shí)層析成像等多種太赫茲成像方法,多篇論文被太赫茲領(lǐng)域的虛擬期刊收錄。 并于2007年和2009年分別到美國(guó)倫斯特理工大學(xué)和德國(guó)康斯坦茨大學(xué)進(jìn)行訪問(wèn)研究。
在以上的研究過(guò)程中,共參與撰寫(xiě)專(zhuān)著三部,獲批國(guó)家發(fā)明專(zhuān)利10項(xiàng),美國(guó)發(fā)明專(zhuān)利1項(xiàng),發(fā)表SCI收錄論文180余篇,被他人引用220余次,H指數(shù)為23。
學(xué)術(shù)兼職:
1.中國(guó)物理學(xué)會(huì)光物理委員會(huì)委員。
2.中國(guó)光學(xué)學(xué)會(huì)高級(jí)會(huì)員。
3.中國(guó)光學(xué)學(xué)會(huì)全息與信息處理委員會(huì)委員。
4.中國(guó)光學(xué)學(xué)會(huì)光學(xué)教育委員會(huì)委員。
5.中國(guó)計(jì)量測(cè)試學(xué)會(huì)計(jì)量?jī)x器專(zhuān)業(yè)委員會(huì)委員。
6.北京市物理學(xué)會(huì)常務(wù)理事。
7.《計(jì)算物理》、《激光與紅外工程》、《電子科學(xué)與技術(shù)學(xué)報(bào)》編委,《中國(guó)物理快報(bào)》《中國(guó)光學(xué)快報(bào)》特約評(píng)審。
8.美國(guó)光電工程師協(xié)會(huì)(SPIE)會(huì)員,IEEE會(huì)員。
9.美國(guó)光學(xué)學(xué)會(huì)資深會(huì)員(Senior Member)。
10.國(guó)際雜志Optics Letters, Optical Express, EPL等雜志審稿人。
國(guó)際會(huì)議組委會(huì)成員:
1、Emerging Infrared Technologies and Applications, International Conference on Materials for Advanced Technologie, 28 June 2015, Singapore
2、Chinese-American Kavli Frontiers of Science Symposium, 11 October 2014, Beijing
3、Infrared, Millimeter-Wave, and Terahertz Technologies III, SPIE/COS Photonics Asia, 9 October 2014, Beijing
4、Infrared, Millimeter-Wave, and Terahertz Technologies II, SPIE/COS Photonics Asia, 5 November 2012, Beijing
5、Infrared, Millimeter Wave, and Terahertz Technologies, SPIE/COS Photonics Asia, 18 October 2010, Beijing
6、Terahertz Photonics, SPIE/COS Photonics Asia, 11 November 2007, Beijing
主講課程:
從2004年開(kāi)始從事本科和研究生教學(xué)工作。
主講本科生課程:《計(jì)算方法》,《數(shù)字信號(hào)處理》。
研究生課程:《數(shù)字圖像處理》,《數(shù)值分析》。
培養(yǎng)研究生情況:
指導(dǎo)研究生:指導(dǎo)碩士研究生5名,指導(dǎo)博士研究生4名。已畢業(yè)研究生25名,博士生5名。
研究方向:
光學(xué)信息與圖像處理,主要研究光學(xué)信息處理理論,分?jǐn)?shù)傅立葉光學(xué)、相位恢復(fù)理論,衍射光學(xué),光學(xué)相干層析,數(shù)字全息,太赫茲光譜與成像,表面等離子體光學(xué)。
承擔(dān)科研項(xiàng)目情況:
1、 基于光學(xué)分?jǐn)?shù)傅立葉變換的空間變化濾波研究,國(guó)家自然科學(xué)基金面上項(xiàng)目(參加),7.0萬(wàn) (1995)(69577006);
2、 THz相干層析技術(shù)的基礎(chǔ)研究,教育部回國(guó)人員基金(負(fù)責(zé)),2.0萬(wàn) (2004);
3、 THz相干層析技術(shù),北京市回國(guó)留學(xué)人員擇優(yōu)資助基金(負(fù)責(zé)),4.0萬(wàn) (2004);
4、 THz數(shù)字全息技術(shù),北京市科技新星計(jì)劃(負(fù)責(zé)),37.0萬(wàn) (2004)(2004B35);
5、 THz波段亞波長(zhǎng)結(jié)構(gòu)器件的研究,北京市優(yōu)秀人才培養(yǎng)資助 (負(fù)責(zé)), 2.0萬(wàn) (2005) 2005ID0501609 ;
6、 表面等離子體亞波長(zhǎng)光學(xué)中的基本物理問(wèn)題研究, 國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃973計(jì)劃課題(負(fù)責(zé)),498萬(wàn)(2006)(2006CB302901);
7、 光子晶體器件的定向設(shè)計(jì)研究,國(guó)家自然科學(xué)基金面上項(xiàng)目(負(fù)責(zé)),25萬(wàn)(2007)(10604042);
8、 分?jǐn)?shù)階隨機(jī)變換及其在光學(xué)信息安全中的應(yīng)用,國(guó)家自然科學(xué)基金面上項(xiàng)目(主要參加),26萬(wàn) (2007)(10674038);
9、 太赫茲雷達(dá)概念研究, 863計(jì)劃課題,(主要參加),10萬(wàn) (2007);
10、 太赫茲雷達(dá)研究,總裝重點(diǎn)基金,(主要參加),960萬(wàn) (2007);
11、 限制SP光刻分辨力的物理因素和解決途徑, 國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃973計(jì)劃課題(負(fù)責(zé)),440萬(wàn)(2011)(2011CB301801);
12、 利用太赫茲技術(shù)進(jìn)行常見(jiàn)物水污染檢測(cè), 北京市自然科學(xué)基金重點(diǎn)項(xiàng)目(負(fù)責(zé)),50萬(wàn)(2011)(KZ201110028035);
13、 太赫茲波段動(dòng)態(tài)亞波長(zhǎng)器件的原理與設(shè)計(jì),國(guó)家自然科學(xué)基金面上項(xiàng)目(負(fù)責(zé)),60萬(wàn)(2012)(11174211);
14、 太陽(yáng)能電池中高效率分色聚焦衍射光學(xué)元件的設(shè)計(jì)和制作, 國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(主要參加),300萬(wàn)(2013)(91233202);
15、 半導(dǎo)體光致載流子時(shí)空特性的太赫茲成像研究,國(guó)家自然科學(xué)基金面上項(xiàng)目(主要參加),25萬(wàn) (2013)(61205097);
16、 教育部新世紀(jì)優(yōu)秀人才計(jì)劃,50萬(wàn)(2013)(NCET-12-0607);
17、 限制超衍射成像分辨力的物理因素和解決途徑,國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃973計(jì)劃課題(負(fù)責(zé)),480萬(wàn)(2013)(2013CBA301702);
18、 基于超穎材料的平板光學(xué)元件波前調(diào)控理論及實(shí)驗(yàn)研究,中國(guó)工程物理研究院太赫茲科學(xué)技術(shù)基金(負(fù)責(zé)), 30萬(wàn)元 (2013)(CAEPTHZ201306);
19、 北京市長(zhǎng)城學(xué)者計(jì)劃,300萬(wàn) (2014)。
近5年來(lái)在基礎(chǔ)研究方面所取得的學(xué)術(shù)成績(jī)、創(chuàng)新點(diǎn)、研究?jī)r(jià)值和科學(xué)意義:
波前的獲取和調(diào)制是了解和操控電磁波的基礎(chǔ),也是利用電磁波進(jìn)行信息傳輸和處理的前提。申請(qǐng)人長(zhǎng)期從事波前信息的獲取和調(diào)制工作,先后開(kāi)展了光學(xué)分?jǐn)?shù)傅里葉變換與應(yīng)用,衍射光學(xué)元器件設(shè)計(jì),數(shù)字全息,太赫茲波譜與成像以及表面等離子體光學(xué)的研究,提出了基于光學(xué)干涉的波前調(diào)制技術(shù);搭建了國(guó)內(nèi)唯一的脈沖太赫茲波焦平面成像系統(tǒng),實(shí)現(xiàn)了太赫茲波前的多參數(shù)獲取;設(shè)計(jì)并制作了多種基于表面等離子體波的光學(xué)器件,實(shí)現(xiàn)對(duì)太赫茲波前的多參量調(diào)控。共發(fā)表SCI收錄論文180余篇,SCI他引1600余次。2011年以來(lái)發(fā)表SCI收錄論文70篇,所有論文近五年被Science,Nature Photonics,Nature Communications等期刊他引1100余次。授權(quán)國(guó)家發(fā)明專(zhuān)利5項(xiàng),國(guó)際專(zhuān)利1項(xiàng)。出版英文專(zhuān)著章節(jié)1章,國(guó)際會(huì)議邀請(qǐng)報(bào)告二十余次。受邀代表中國(guó)青年學(xué)者在第十五屆中美科學(xué)前沿論壇上介紹國(guó)內(nèi)的太赫茲工作。“太赫茲脈沖波焦平面成像系統(tǒng)”榮獲2014年中國(guó)產(chǎn)學(xué)研合作創(chuàng)新成果獎(jiǎng)。入選教育部新世紀(jì)優(yōu)秀人才,北京市長(zhǎng)城學(xué)者,北京市百千萬(wàn)人才工程和北京市高層次創(chuàng)新創(chuàng)業(yè)人才計(jì)劃,是美國(guó)光學(xué)學(xué)會(huì)資深會(huì)員。
主要學(xué)術(shù)成績(jī)和創(chuàng)新成果有:
1)太赫茲焦平面成像方法
太赫茲成像技術(shù)充分利用了太赫茲波的穿透特性和相干探測(cè)特性,是太赫茲領(lǐng)域最有可能率先取得突破的方向,具有重要的經(jīng)濟(jì)、社會(huì)和安全價(jià)值。我們結(jié)合太赫茲時(shí)域光譜技術(shù)和數(shù)字全息技術(shù),設(shè)計(jì)、搭建并發(fā)展了國(guó)內(nèi)唯一,國(guó)際先進(jìn)的太赫茲脈沖波焦平面成像系統(tǒng),可以獲得太赫茲光場(chǎng)三維空間振幅、相位、頻率和偏振信息,我們采用準(zhǔn)近場(chǎng)成像方法將空間分辨率提高到亞波長(zhǎng)量級(jí),利用差分成像方法將系統(tǒng)信噪比提高4倍,利用偏振成像方法獲取偏振信息,結(jié)合泵浦成像技術(shù),獲得了樣品時(shí)間分辨的圖像信息。該系統(tǒng)為太赫茲波段半導(dǎo)體微納結(jié)構(gòu)器件和表面等離子體器件研制提供了有力的表征平臺(tái)。相關(guān)論文發(fā)表在J. Opt. Soc. Am. A雜志上,被選為該雜志2011年度成像系統(tǒng)下載Top 10文章,相關(guān)技術(shù)獲批美國(guó)專(zhuān)利。我們還將這一技術(shù)擴(kuò)展到太赫茲表面等離子體波的探測(cè)成像之中,研制了一種快速的太赫茲表面等離子體波成像表征系統(tǒng),并應(yīng)用于偏振控制的表面等離子體波聚焦特性的表征,并給出了相應(yīng)的理論解釋。該工作發(fā)表在Opt. Express 22:16916,2014上,得到了SPIE Newsroom的報(bào)道,見(jiàn)http://spie.org/x110658.xml?highlight=x2422&ArticleID=x110658。利用電光晶體能夠測(cè)量傳播方向電場(chǎng)分量的特性,搭建了表征表面等離子體波器件功能的成像系統(tǒng),可以有效地提取金屬表面等離子體波的振幅和相位,實(shí)現(xiàn)器件功能的表征,結(jié)果發(fā)表在Sci. Rep. 6: 18768,2016上。
利用雙波長(zhǎng)成像方法解決了太赫茲相位成像中的相位纏繞問(wèn)題。由于在脈沖太赫茲波測(cè)量中,兩個(gè)波長(zhǎng)信息是同時(shí)測(cè)量的,利用雙波長(zhǎng)成像方法的相位處理不僅可以解決相位纏繞問(wèn)題,還可以降低圖像噪音,提高信噪比。該工作被南佛羅里達(dá)大學(xué)的Myung K. Kim教授的專(zhuān)著Digital Holographic Microscopy: Principles, Techniques, and Applications, Springer Series in Optical Sciences 162,2011,以及Opt. Lett. 35:2112,2010, Opt. Lett. 36:1993,2011和Appl. Phys. B 107:103,2012等工作引用并評(píng)論,指出這是一種有效的太赫茲成像方法,可以提高成像系統(tǒng)的信噪比。日本學(xué)者Tanaka教授也采用我們提出的新方法來(lái)提高成像的信噪比和分辨率(J. Infrared Milli. Terahertz Waves 32:1043,2010),瑞士學(xué)者Faist教授認(rèn)為這種方法可以提高分辨率到亞波長(zhǎng)量級(jí)(Opt. Express 20:2772,2012)。日本學(xué)者Watanabe教授在他的一篇論文(Appl. Phys. Lett. 105: 151103,2014)中引用了我們4篇文章,并指出我們的方案是一種不需要太赫茲偏振器件就可以得到太赫茲偏振態(tài)的好方法,可以在不損耗能量的情況下獲得太赫茲的偏振信息(Rev. Sci. Instrum. 83:023104,2012)。
推廣太赫茲脈沖波焦平面成像系統(tǒng)的應(yīng)用。利用該系統(tǒng)可以直接測(cè)量相位的特點(diǎn),研究了太赫茲波導(dǎo)的傳播模式、太赫茲透鏡的Gouy相移和表面等離子體器件的表征等問(wèn)題。系列工作發(fā)表在Opt. Express 20:7706, 2012, Opt. Express 21:2337,2013,Opt. Express 21:20230,2013等期刊上。Opt. Express審稿人對(duì)我們Gouy相移研究的工作評(píng)價(jià)為:“作者給出了他們多年來(lái)發(fā)展的太赫茲平衡光電探測(cè)技術(shù)的一個(gè)有趣的應(yīng)用。”
這些工作開(kāi)拓了太赫茲技術(shù)的應(yīng)用范圍,特別是利用脈沖太赫茲焦平面成像系統(tǒng)可以同時(shí)測(cè)量振幅和相位的特點(diǎn),為太赫茲波段的材料和器件的表征開(kāi)辟了道路。
2)太赫茲波段表面等離子體光學(xué)器件的設(shè)計(jì)、制備和表征
傳統(tǒng)的光學(xué)器件基于材料光學(xué)調(diào)制特性在光傳播方向上的積累,體積大,功能單一。表面等離子體光學(xué)器件利用亞波長(zhǎng)金屬微納結(jié)構(gòu)同電磁波相互作用的基本原理,實(shí)現(xiàn)對(duì)電磁波多參量的調(diào)節(jié),可以有效的縮小光學(xué)元件的體積,并集多種功能于一身。我們將楊—顧算法等優(yōu)化設(shè)計(jì)算法從標(biāo)量領(lǐng)域推廣到矢量光學(xué)領(lǐng)域,設(shè)計(jì)了多種具有集成功能的表面等離子體亞波長(zhǎng)器件,實(shí)現(xiàn)對(duì)太赫茲波前的振幅、相位、偏振以及頻率的調(diào)制,并在實(shí)驗(yàn)上給予了驗(yàn)證。
將優(yōu)化設(shè)計(jì)方法引入到基于表面等離子體的微納光學(xué)元器件的設(shè)計(jì)之中,將楊-顧算法從標(biāo)量理論框架擴(kuò)展到矢量理論框架,成功地設(shè)計(jì)了可實(shí)現(xiàn)多焦點(diǎn)聚焦的表面等離子體透鏡,工作發(fā)表在Opt. Express 19:9512,2011和Appl. Opt. 50:1879,2011上,這為設(shè)計(jì)多功能多用途的表面等離子體器件提供了有效方法, 促進(jìn)了表面等離子體器件的實(shí)用化。中科院光電所的杜春雷研究員等人在引用我們的文章(Opt. Express 21:18689,2013)時(shí)指出“最近,朱等人報(bào)道了他們利用模擬退火算法和楊顧算法(我們的工作)設(shè)計(jì)多焦點(diǎn)等離子體透鏡的工作。據(jù)我們所知,這是第一個(gè)將優(yōu)化算法引入到等離子體透鏡的設(shè)計(jì)中的工作。”
提出了與優(yōu)化算法相結(jié)合的表面等離子體器件的設(shè)計(jì)方法,設(shè)計(jì)并制作了太赫茲波段超表面超薄平板透鏡,相位全息以及能夠?qū)崿F(xiàn)其他綜合功能的超薄元件,實(shí)驗(yàn)結(jié)果證明了這一設(shè)想的可行性,設(shè)計(jì)的器件可以很好地實(shí)現(xiàn)預(yù)定功能,而其厚度只是工作波長(zhǎng)的四千分之一。主要工作發(fā)表在Adv. Opt. Mat. 1:186,2013上,論文被該雜志評(píng)為年度十二篇最佳論文之一。工作被Science,Nat. Photon., Nat. Commun.,Adv. Opt. Mat.,Light: Sci. Appl. 等重要期刊論文引用,并得到了國(guó)內(nèi)外網(wǎng)站的報(bào)道,認(rèn)為這一工作在減小太赫茲光學(xué)器件尺度上邁出了意義重大的一步,對(duì)發(fā)展微集成太赫茲系統(tǒng)或者其他需要緊湊系統(tǒng)的應(yīng)用具有重要意義。在此基礎(chǔ)上,我們開(kāi)展了一系列研究,利用超表面器件實(shí)現(xiàn)對(duì)太赫茲波前的多參量控制,實(shí)現(xiàn)對(duì)太赫茲波前的振幅、相位、偏振以及波長(zhǎng)的控制,工作發(fā)表在Opt. Express 21:20230,2013,Opt. Express 21:30030,2013和Opt. Express 23:26434,2015上。我們利用超表面材料產(chǎn)生太赫茲渦旋光束的工作被日本學(xué)者Omatsu(Appl. Phys. Lett. 104: 261104, 2014)認(rèn)為是“目前為止,利用超薄金屬表面上V型狹縫天線和飛秒激光泵浦太赫茲源產(chǎn)生太赫茲渦旋工作的唯一報(bào)道。”俄羅斯學(xué)者Knyazev教授(Phys. Rev. Lett. 115: 163901, 2015)指出 “至今為止,關(guān)于在太赫茲波段產(chǎn)生渦旋光束的實(shí)驗(yàn)只有三個(gè)。賀等(我們的工作)利用V型天線陣列和寬帶太赫茲源產(chǎn)生了太赫茲渦旋光束。”美國(guó)洛斯阿拉莫斯國(guó)家實(shí)驗(yàn)室的陳候通教授在他的綜述文章中(Front. Optoelectron. 8: 27,2015)中指出“利用各種共振結(jié)構(gòu)和尺寸,可以產(chǎn)生用于高效波前任意調(diào)控的相位梯度,實(shí)現(xiàn)平板太赫茲棱鏡或透鏡(我們的工作)。”
我們研究了環(huán)帶結(jié)構(gòu)對(duì)太赫茲波的調(diào)制作用,給出了太赫茲波共振透射的條件,首次發(fā)現(xiàn)環(huán)帶結(jié)構(gòu)的幾何對(duì)稱(chēng)性破缺會(huì)極大地影響太赫茲波的共振透射,從而可以利用結(jié)構(gòu)對(duì)稱(chēng)性來(lái)調(diào)制透射波的強(qiáng)度,實(shí)驗(yàn)結(jié)果很好地驗(yàn)證了理論預(yù)測(cè),這為人工調(diào)制金屬亞波長(zhǎng)結(jié)構(gòu)的電磁響應(yīng)提供了一個(gè)新的途徑。主要工作發(fā)表在Phys. Rev. A 85:045801,2012 和IEEE J. Select. Top. Quant. Electr. 19:8400606,2013上。
我們提出了利用Fabry-Perot來(lái)調(diào)控太赫茲波段金屬光柵的瑞利反常反射,從而提高太赫茲波段光柵傳感的靈敏度,該工作受邀發(fā)表在J. Opt. 16:094015,2014上(邀請(qǐng)論文),工作得到了該雜志網(wǎng)站的報(bào)道,認(rèn)為這一工作為獲得高質(zhì)量的太赫茲傳感器方向邁出了重要一步,并被選為該雜志的高質(zhì)量論文,做成彩頁(yè)宣傳。
本方向工作開(kāi)創(chuàng)了太赫茲超表面平板光學(xué)器件研究的新領(lǐng)域,為太赫茲波前的調(diào)控提供了新思路,并可以擴(kuò)展到其他波段。
3)動(dòng)態(tài)調(diào)控太赫茲波前的新方案
太赫茲波前的動(dòng)態(tài)調(diào)控,對(duì)利用太赫茲波進(jìn)行成像和空間通訊具有重要的意義。我們提出了一種新的太赫茲波前調(diào)控技術(shù),利用可見(jiàn)光的空間光調(diào)制器改變泵浦光的強(qiáng)度分布,使其在高阻硅等半導(dǎo)體表面形成特定的光生載流子分布,從而實(shí)現(xiàn)對(duì)太赫茲波透過(guò)率的調(diào)制,進(jìn)一步實(shí)現(xiàn)對(duì)太赫茲波前的調(diào)制,其調(diào)制分辨率可達(dá)到2微米。利用這一方法加載了太赫茲計(jì)算全息圖,生成了具有特定波前分布的太赫茲光束,主要工作發(fā)表在Opt. Lett. 38:4731,2013;Sci. Rep. 3:3347,2013;Opt. Lett. 40:359,2015上,其中Sci. Rep. 編委對(duì)我們的工作給予了很高的評(píng)價(jià),并直接發(fā)表。編委會(huì)成員評(píng)論:我發(fā)現(xiàn)它十分有趣,新穎和正確。作者演示的效應(yīng)雖然不是十分強(qiáng),但是我認(rèn)為這個(gè)想法會(huì)進(jìn)一步發(fā)展并會(huì)引起太赫茲學(xué)術(shù)界的興趣。莊松林院士在他們的綜述文章中(Appl. Spectrosc. Rev. 50: 707,2015)引用并評(píng)論我們的工作,指出:“謝等人(我們的工作)提出基于光生載流子的空間太赫茲調(diào)制器來(lái)調(diào)控太赫茲波,特別是太赫茲波前。該方法已被應(yīng)用在成像和通訊研究中。與已有的電控調(diào)制器相比,該方法分辨率高、帶寬寬、調(diào)制深度大。此外,該方法更經(jīng)濟(jì)、簡(jiǎn)單和高效。”
4)光學(xué)圖像加密
此外,申請(qǐng)者還在數(shù)字全息波前重建和光學(xué)圖像加密方面做出了突出貢獻(xiàn),提出了一種基于干涉的波前調(diào)制方法,并應(yīng)用于光學(xué)圖像加密之中(Opt. Lett. 33: 2433,2008)。該方法克服了以往方法利用迭代算法計(jì)算相位板相位分布十分耗時(shí)的缺點(diǎn),利用解析方法將任意復(fù)振幅分布分解到兩個(gè)純相位分布之中,具有快速準(zhǔn)確的特點(diǎn)。該方法為光學(xué)圖像加密提供了新途徑,開(kāi)創(chuàng)了一個(gè)新方向。我們將這一方法擴(kuò)展應(yīng)用在多圖像加密和三維圖像重建中,并提出了基于密文流的圖像加密方法,工作發(fā)表在Opt. Express 19:2634,2011上。此外,我們還提出了基于非相干光源的光學(xué)圖像加密方法,發(fā)表在Opt. Lett. 38:1289,2013上。
北京理工大學(xué)王涌天教授團(tuán)隊(duì)多次引用了我們的工作,并開(kāi)展了后續(xù)研究。他們利用偏振復(fù)用技術(shù),從實(shí)驗(yàn)上實(shí)現(xiàn)了我們提出的方法(Opt. Express 17:13418,2009),利用我們提出的方法設(shè)計(jì)和制作了衍射光學(xué)元器件,實(shí)現(xiàn)了復(fù)振幅調(diào)制(Opt. Lett. 36:4053,2011;Opt. Express 21:5140,2013)和全息三維顯示(Opt. Commun. 283:4969,2010);,并在實(shí)驗(yàn)上驗(yàn)證了我們的加密算法(Opt. Commun. 284:2485,2011)。他們?cè)谝梦覀兊墓ぷ鲿r(shí)指出:“最近,張和王提出了基于干涉的圖像加密的一系列構(gòu)架,目標(biāo)圖像被解析地編碼到兩個(gè)純相位板中(我們的工作)。在解密過(guò)程中,兩個(gè)相位板用于調(diào)制波前,經(jīng)過(guò)一個(gè)半透半反鏡合束后,兩束被調(diào)制光相互干涉,在輸出平面上形成解密圖像。這種新的加密算法十分簡(jiǎn)單并不需要迭代算法。”
上海光機(jī)所周常河研究員在引用我們的工作(Appl. Opt. 51:5253,2012)時(shí)指出“最近,張和王提出一種基于菲涅爾域中雙純相位板光學(xué)干涉的新型圖像加密方法(我們的工作),通過(guò)將一個(gè)復(fù)場(chǎng)分解為兩個(gè)純相位板的加密方法十分簡(jiǎn)單,解密可以是光學(xué)的也可以是數(shù)字的”,“之后,張?zhí)岢隽艘环N改進(jìn)的基于干涉的加密算法(我們的工作),通過(guò)隨機(jī)部分交換兩個(gè)相位板來(lái)提高安全度”。
光學(xué)圖像加密領(lǐng)域的開(kāi)拓者Javidi教授在他們的綜述(Adv. Opt. Phot. 6: 120, 2014)中專(zhuān)門(mén)利用一節(jié)來(lái)介紹我們的工作,指出:“雖然相位恢復(fù)算法可以有效地將一副圖像隱藏在純相位板中,但是通常需要迭代算法。最近,張和王(我們的工作)提出了一種基于干涉原理的不需要迭代的相位恢復(fù)算法來(lái)進(jìn)行光學(xué)圖像加密。”
所提出的基于光學(xué)干涉的波前調(diào)制方法被國(guó)內(nèi)外學(xué)者廣泛引用,開(kāi)拓了光學(xué)圖像加密的一個(gè)新途徑,并將該方法用于太赫茲波前調(diào)控。提出本方法的論文連續(xù)兩年被評(píng)為Opt. Lett.期刊近七年來(lái)引用最多的論文之一。
此外,申請(qǐng)者還通過(guò)在光纖端面加工金屬微納結(jié)構(gòu),實(shí)現(xiàn)增強(qiáng)拉曼信號(hào)的增強(qiáng)和收集,實(shí)現(xiàn)了百萬(wàn)分之一的結(jié)晶紫溶液的探測(cè)。該器件可以容易地同光纖網(wǎng)絡(luò)連接,實(shí)現(xiàn)分布式探測(cè)。工作發(fā)表在Adv. Opt. Mat. 3:1232,2015上,并被選為內(nèi)封文章。
發(fā)明專(zhuān)利(Patents):
1. 張巖,張亮亮, 張存林等,“利用CCD相機(jī)進(jìn)行實(shí)時(shí)差分成像探測(cè)的方法”,發(fā)明專(zhuān)利, CN200610056141.0
2. 張巖,張亮亮, 張存林等,“太赫茲輻射偏振成像方法”,發(fā)明專(zhuān)利, CN 200610056142.5
3. 張巖, 王波, “光學(xué)實(shí)時(shí)三維立體顯示裝置及方法”,發(fā)明專(zhuān)利, CN 201010118191.3
4. 張巖,“ 太赫茲輻射偏振成像方法”,發(fā)明專(zhuān)利,CN 2010101226415.5
5. 王新柯,張巖, “太赫茲時(shí)空分辨成像系統(tǒng)”,實(shí)用新型專(zhuān)利,CN 201320019407.X
6. 張巖, 王新柯,“利用光控動(dòng)態(tài)光學(xué)元件調(diào)制太赫茲的方法”,發(fā)明專(zhuān)利, CN 201310298429.9
7. 王新柯, 張巖, “太赫茲時(shí)空分辨成像系統(tǒng)、成像方法及應(yīng)用”,發(fā)明專(zhuān)利:CN 201310013686.3
8. 張巖,王新柯,“TERAHERTZ TEMPORAL AND SPATIAL RESOLUTION IMAGING SYSTEM, AN IMAGING METHOD AND AN APPLICATION THEREOF,”US9228899B28
9. 張巖, 胡丹,“平面光學(xué)元件及其設(shè)計(jì)方法”,申請(qǐng)?zhí)枺?012010086716.9
10. 張巖, 胡丹,“A PLANAR OPTICAL COMPONENT AND ITS DESIGN METHOD,”申請(qǐng)?zhí)枺篜CT/CN2012/073925
LIST OF PUBLICATIONS
一. Peer-review papers
1. Xinke Wang, Jing Shi, Wenfeng Sun, Shengfei Feng, Peng Han, Jiasheng Ye, and Yan Zhang, “Longitudinal field characterization of converging terahertz vortices with linear and circular polarizations,” Optics Express, in press (2016). (191)
2. Chen Zhao, Yunsong Zhou, Yan Zhang, Huaiyu Wang, “The imaging properties of the metal superlens,” Optics Commun. 368 180-184 (2016).
3. Maixia Fu, Baogang Quan, Jingwen He, Zehan Yao, Changzhi Gu, Junjie Li, and Yan Zhang, “Ultrafast terahertz response in photoexcited, vertically grown few-layer graphene,” Appl. Phys. Lett. 108, 121904 (2016).
4. Haiping He, Qianqian Yu, Hui Li, Jing Li, Junjie Si, Yizheng Jin, Nana Wang, Jianpu Wang, Jingwen He, Xinke Wang, Yan Zhang, and Zhizhen Ye, “Exciton localization in solution-processed organolead trihalide perovskites,” Nature Communications 7 10896 (2016).
5. Jingwen He, Zhenwei Xie, Wenfeng Sun, Xinke Wang, Yanda Ji, Sen Wang, Yuan Lin, and Yan Zhang, “Terahertz tunable metasurface lens based on vanadium dioxide phase transition,” Plasmonic, DOI 10.1007/s11468-015-0173-2 (2016).
6. Hui Wang, Zhenwei Xie, Mile Zhang, Hailin Cui, Jingsuo He, Shengfei Feng, Xinke Wang, Wenfeng Sun, Jiasheng Ye, Peng Han, and Yan Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. & Laser Techn. 78 110-115 Invited (2016).
7. Xinke Wang, Sen Wang, Wenfeng Sun, Shengfei Feng, Peng Han, Haitao Yan, Jiasheng Ye, and Yan Zhang, “Visualization of terahertz surface waves propagation on metal foils,” Scientific Reports, 6:18768 (2016).
8. Jingjing Wu, Zhenwei Xie, Zhengjun Liu, Wei Liu, Yan Zhang, and Shutian Liu, “Multiple-image encryption based on computational ghost imaging,” Opt. Comun. 359, 38–43 (2016).
9. Qiang Yin, Sucheng Li, Fa Tian, Qian Duan, Weixin Lu, Bo Hou, Fengang Zheng, Mingrong Shen, Xinke Wang, and Yan Zhang, “Achromatic THz absorption of conductive nanofilms,” AIP Advances 5, 107139 (2015).
10. Sen Wang, Xinke Wang, Qiang Kan, Shiliang Qu, and Yan Zhang, “Cirrcular polarization analyzer with polarization tunable focusing of surface plasmon polaritons,” Appl. Phys. Lett. 107, 243504 (2015).
11. Jingwen He, Zhenwei Xie, Sen Wang, Xinke Wang, Qiang Kan, and Yan Zhang, “Terahertz polarization modulator based on metasurface,” J. Opt. 17 105107 (2015).
12. Sen Wang, Xinke Wang, Qiang Kan, Jiasheng Ye, Shengfei Feng, Wenfeng Sun, Pen Han, Shiliang Qu, and Yan Zhang, “Spin-selected focusing and imaging based on metasurface lens,” Optics Express 23(20) 26434-26441(2015).
13. Lifeng Zhang, Jiasheng Ye, Wenfeng Sun, Shengfei Feng, Xinke Wang, and Yan Zhang, “Point light source imaging by a three-dimensional long-imaging-depth lens,” Opt. Commun. 347 141-146 (2015)
14. Xiao Xiao, Bingpu Zhou, Xinke Wang, Jingwen He, Bo Hou, Yan Zhang, and Weijia Wen, “An Analog of electrically induced transparency via surface delocalized modes,” Scientific Reports 5 12251 (2015).
15. Bo Wang and Yan Zhang, “Enhancement of optical magnetic mode by handedness of symmetry breaking in Fano metamolecule,” IEEE Journal of Quantum Electronics, 51 7300108 (2015).
16. Sen Wang, Xinke Wang, Feng Zhao, Shiliang Qu, and Yan Zhang, “Observation and explanation of polarization-controlled focusing of Terahertz surface plasmon polaritons,” Phys. Rev. A 91 053812 (2015).
17. Kaiqiang Yu, Xinke Wang, Wenfeng Sun, and Yan Zhang, “Terahertz spectrum modulation with liquid crystal spatial light modulator,” 光譜與光譜分析, 35 1182-1186 (2015).
18. Wei Liu, Yan Zhang, Zhenwei Xie, Zhengjun Liu, and Shutian Liu, "Secure optical verification using dual phase-only correlation," J. Opt. 17 025703 (2015). (175)
19. Feng Zhao, Shuming Long, Yuanyuan Zhang, Xinke Wang, Jiasheng Ye, and Yan Zhang, "Fingerprint data extraction from Chinese herbal medicines with terahertz spectrum based on second-order harmonic oscillator model," Acta Physica Sinca 64 024202 (2015).
20. Zhenwei Xie, Shengfei Feng, Peijie Wang, Lisheng Zhang, Xin Ren, Lin Cui, Tianrui Zhai, Jie Chen, Yonglu Wang, Xinke Wang, Wenfeng Sun, Jiasheng Ye, Peng Han, Peter J. Klar, and Yan Zhang, "Demonstration of a 3D radar-like SERS sensor micro and nano-fabricated on an optical fiber," Adv. Opt. Mat. 3 1232-1239 (2015).
21. Zhenwei Xie, Jingwen He, Xinke Wang, Shengfei Feng, and Yan Zhang, "Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers," Opt. Lett. 40 359-362 (2015).
22. Wei Liu, Zhenwei Xie, Zhengjun Liu, Yan Zhang, and Shutian Liu, "Multiple-image encryption based on optical asymmetric key cryptosystem," Opt. Commun. 335 205-211 (2015).
23. Lijuan Xie, Jiasheng Ye, Jingwen He, Wenfeng Sun, Shengfei Feng, Xinke Wang, and Yan Zhang, "Axial intensity oscillation suppression for plane-wave diffraction from a circular hole: Flattened Gaussian apodization," Opt. Commun. 335 178-182 (2015).
24. Bo Wang, Zhenwei Xie, Shengfei Feng, Bo Zhang, and Yan Zhang, "Ultrahigh Q-factor and figure of merit plasmonic Fano metamaterial based on dark ring magnetic mode," Opt. Commun. 335 60-64 (2015).
25. Xinke Wang, Sen Wang, Zhenwei Xie, Wenfeng Sun, Shengfei Feng, Ye Cui, Jiasheng Ye, and Yan Zhang,"Full vector measurements of converging terahertz beams with linear, circular, and cylindrical vortex polarization," Opt. Express 22 24622 (2014).
26. Xia Yu, Zhong-Xiang Xie, Jun-Hua Liu, Yong Zhang, Hai-BinWang, Yan Zhang, "Optimization design of a diffractive axicon for improving the performance of long focal depth," Opt. Commun. 330 1-5 (2014).
27. Linping Deng, Torsten Henning, Peter Klar, Shengfei Feng, Zhenwei Xie, Xinke Wang, Jia-Sheng Ye, Wenfeng Sun, Peng, Han, and Yan Zhang, "Optimization of the Rayleigh anomaly of metallic gratings for THz sensor applications, " J. Opt. 16 094015 (2014) Invited Paper.
28. Sen Wang, Feng Zhao, Xinke Wang, Shiliang Qu, and Yan Zhang, "Comprehensive imaging of terahertz surface plasmon polaritons," Opt. Express 22 16916-16924 (2014).
29. Xianzhong Chen, Yan Zhang, Lingling Huang, and Shuang Zhang, "Ultrathin metasurface laser beam shaper," Advanced Optical Materials, 2 978-982 (2014).
30. Dan Hu, Gabriel Moreno, Xinke Wang, Jingwen He, Abdallah Chahadih, Zhenwei Xie, Bo Wang, Tahsin Akalin, and Yan Zhang, "Dispersion characteristic of ultrathin terahertz planar lenses based on metasurface," Opt. Comm. 322 164-168 (2014).
31. Yingqi Wang, Yanhua Wang, Xianhua Zheng, Jiasheng Ye, Yan Zhang, and Shutian Liu, "Transmission through array of subwavelength metallic slits curved with a single step or mutli-step," Chin. Phys. B, 23 034202 (2014).
32. Wenfeng Sun, Xinke Wang, and Yan Zhang, "Continuous wave terahertz phase imaging with three-step phase-shifting," Optik 124 5533-5536 (2013).
33. Wenfeng Sun, Bin Yang, Xinke Wang, Yan Zhang, and Robert Donnan, "Accurate determination of terahertz optical constants by vector network analyzer of Fabry-Perot response," Opt. Lett. 38 5438-5441 (2013).
34. Dan Hu, Chung-Ping Liu, and Yan Zhang, "Active control of terahertz multimode resonance transmission through subwavelength metal annular aperture arrays," J. Mod. Opt. 60 1548-1553 (2013).
35. Zhenwei Xie, Xinke Wang, Jiasheng Ye, Shengfei Feng, Wenfeng Sun, Tahsin Akalin, and Yan Zhang, "Spatial terahertz modulator," Scientific Reports, 3 3347 (2013).
36. Xiao-Yan Jiang, Jia-Sheng Ye, Jing-Wen He, Xin-Ke Wang, Dan Hu, Sheng-Fei Feng, Qiang Kan, and Yan Zhang, "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Opt. Express 21 30030-30038 (2013).
37. Xinke Wang, Zhenwei Xie, Wenfeng Sun, Shengfei Feng, Ye Cui, Jiasheng Ye, and Yan Zhang, "Focusing and imaging of a virtual all-optical tunable terahertz Fresnel zone plate," Opt. Lett. 38 4731-4734 (2013).
38. Yingqi Wang, Jiasheng Ye, Shutian Liu, and Yan Zhang, "A new near-field phase-correction method for superlens," Chin. Phys. B, 22 114202 (2013).
39. Jingwen He, Guoai Mei, Jiasheng Ye, Xinke Wang, Shengfei Feng, and Yan Zhang, "Uniform axial intensity distributions of long-focal-depth cylindrical micromirrors realized by an amplitude-phase modulation method," J. Mod. Opt. 60 688-695 (2013).
40. Zhenwei Xie, Jinliang Zang, and Yan Zhang, "Accelerated algorithm for three dimensional computer generated hologram based on the ray-tracing method," J. Mod. Opt., 60 797-802 (2013).
41. Bo Wang, Xue Wu, and Yan Zhang, “Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays,” Plasmonics 8 1535-1541 (2013).
42. Jingwen He, Xinke Wang, Dan Hu, Jiasheng Ye, Shengfei Feng, Qiang Kan, and Yan Zhang, "Generation and evolution of the terahertz vortex beam," Opt. Express 21 20230-20239 (2013).
43. Jinliang Zang, Zhenwei Xie, and Yan Zhang, “Optical image encryption with spatially incoherent illumination,” Opt. Lett. 38 1289-1291 (2013).
44. Jia-Sheng Ye, Jin-Ze Wang, Qing-Li Huang, Bi-Zhen Dong, Yan Zhang, Guozhen Yang, “A single diffractive optical element for implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency,” Chin. Phys. B, 22 034201 (2013).
45. Guoai Mei, Jia-Sheng Ye, and Yan Zhang, "Rigorous electromagnetic analysis of a dual-metallic-cylindrical-focusing-micromirror array with long focal depth," Optik 124 1961-1965 (2013).
46. Dan Hu, Shengfei Feng, Bizhen Dong, and Yan Zhang, “Standing-wave plasmonic resonance in terahertz extraordinary transmission,” IEEE J Select. Top. Quant. Electr., 19 8400606, (2013).
47. Dan Hu, Xinke Wang, Shengfei Feng, Jiasheng Ye, Wenfeng Sun, Qiang Kan, Peter J. Klar, and Yan Zhang, “Ultrathin terahertz planar elements,” Advanced Optical Materials, 1 186-193 (2013).
48. Jiasheng Ye, Guoai Mei, Bizhen Dong, and Yan Zhang, “A monotonic-increasing-thickness model for designing cylindrically diffractive focusing micromirrors and micromirror arrays,” J. Lightwave Technology, 31 930-935 (2013).
49. Xinke Wang, Wenfeng Sun, Ye Cui, Jiasheng Ye, Shengfei Feng, and Yan Zhang, “Complete presentation of the Gouy phase shift with the THz digital holography,” Optics Express, 21 2337-2346 (2013).
50. Jingwen He, Guoai Mei, Jiasheng Ye, Yan Zhang, “Validity range of the improved Rayleigh-Sommerfeld method in analyzing metallic cylindrical focusing micromirrors,” Opt. Comm. 291 359 – 365 (2013).
51. Tingting Bian, Bizhen Dong, and Yan Zhang, “A broadband nanosensor based on multi-surface-plasmonic interference,” Plasmonics, 8 741-744 (2013).
52. Kai Guo, Jianlong Liu, Yan Zhang, Shutian Liu, “Chromatic aberration of light focusing in hyperbolic anisotropic metamaterial made of metallic slit array,” Optics Express 20 28586-28593 (2012).
53. Xia Yu, Ke-Qiu Chen, and Yan Zhang, “Optical transport through finite superlattice modulated with three component quasiperiodic defect,” J. Appl. Phys. 112 043524 (2012).
54. Xia Yu, Ke-Qiu Chen, and Yan Zhang, “Perfect optical transport and optical band gap in quasiperodic superlattices,” Mod. Phys. Lett. 26 1250110 (2012).
55. 劉暢, 岳凌月, 王新柯, 孫文峰, 張巖, “利用太赫茲反射式時(shí)域光譜系統(tǒng)測(cè)量有機(jī)溶劑的光學(xué)參數(shù),” 光譜與光譜分析, 32 1471-1475 (2012).
56. Tingting Bian, Bizhen Dong, and Yan Zhang, “Polarization independent extraordinary transmission through a subwavelength slit,” Opt. Commun. 285 1523-1527 (2012).
57. Dan Hu, Changqing Xie, Ming, Liu, and Yan Zhang, “High transmission of annular aperture arrays caused by symmetry breaking,” Phys. Rev. A 85 045801 (2012).
58. Xinke Wang, Wei Xiong, Wenfeng Sun, and Yan Zhang, “Coaxial waveguide mode reconstruction and analysis with THz digital holography,” Optics Express 20 7706-7715 (2012).
59. Yang Gao, Jianlong Liu, Xueru Zhang, Yuxiao Wang, Yinglin Song, Shutian Liu, and Yan Zhang, “Analysis of focal-shift effect in planar metallic nanoslit lenses,” Optics Express 20 1320-1329 (2012).
60. Jia-Sheng Ye, Guo-Ai Mei, Xian-Hua Zheng, and Yan Zhang, “Long-focal-depth cylindrical microlens with flat axial intensity distributions,” J. Mod. Opt. 59 90-94 (2012).
61. Wenfeng Sun, Xinke Wang, and Yan Zhang, “A method to monitor the oil pollution in water with reflective pulsed terahertz tomography,” Optik 123 1980-1984 (2012).
62. Xia Yu, Ke-Qiu Chen, and Yan Zhang, “Optimization design of diffractive phase elements for beam shaping,” Applied Optics 50 5938-5943 (2011).
63. Weining Wang, Guo Wang, and Yan Zhang, “Low-frequency vibrational modes of glutamine,” Chinese Physics B, 20 123301 (2011).
64. 劉暢, 王新柯, 孫文峰, 張巖, “非極性有機(jī)溶劑光學(xué)參數(shù)的太赫茲波精確測(cè)量,” 光譜與光譜分析, 31 2886-2890 (2011).
65. Tingting Bian, Benyuan Gu, and Yan Zhang, “Transmission properties of light through a metallic nanoslit with a defected horizontal nanocavity,” Opt. Comm. 284 3456-3461 (2011).
66. 毋雪,朱巧芬,張巖,“基于非周期極化鈮酸鋰晶體產(chǎn)生任意頻率太赫茲輻射”,紅外與毫米波學(xué)報(bào),30 221-224(2011).
67. Guo-Ai Mei, Jia-Sheng Ye, Yan Zhang, and Jie Lin, “Metallic cylindrical focusing micromirrors with long axial focal depth or increased lateral resolution,” J. Opt. Soc. Am. A 28 1051-1057 (2011).
68. Zhengjun Liu, Yan Zhang, Haifa Zhao, Muhammad Ashfaq Ahmad, and Shutian Liu, “Optical multi-image encryption based on frequency shift,” Optik 122 1010-1013 (2011).
69. Qiaofen Zhu, Dayong Wang, Xianhua Zheng, and Yan Zhang, “optical lens design based on metallic nano-slits with variant widths,” Appl. Opt. 50 1879-1883 (2011).
70. Qiaofen Zhu, Dayong Wang, and Yan Zhang, “Control of photonic band gaps in one-dimensional photonic crystals,” Optik 122 330-332 (2011).
71. Qiaofen Zhu, Jia-Sheng Ye, Dayong Wang, Benyuan Gu, and Yan Zhang, “Optimal design of SPP-based metallic nanoaperture optical elements by using Yang-Gu algorithm,” Optics Express, 19 9512-9522 (2011).
72. Bing Yang, Zhengjun Liu, Bo Wang, Yan Zhang, and Shutian Liu, “Optical stream-cipher-like system for image encryption based on Michelson interferometer,” Opt. Express 19 2634-2642 (2011).
73. Bin Yang, Xinke Wang, Yan Zhang, and Robert S. Donnan, “Experimental characterization of hexaferrite ceramics from 100 GHz to 1THz using vector network analysis and THz-time domain spectroscopy,” J. Appl. Phys. 109 033509 (2011).
74. Yingqi Wang, Yanhua Wang, Jiasheng Ye, Yan Zhang, and Shutian Liu, “Transmission through metallic array slits curved with perpendicular waveguides,” Opt. Comm. Vol. 284 877-880 (2011).
75. Tingting Bian, Benyuan Gu, and Yan Zhang, “Near-field properties of double nanoslits coupled with a wide collection cavity drilled on a metal film,” Optik, 122 1828-1831 (2011).
76. Yun Ren, KQ Chen, Jun He, Liming Tang, Anlian Pan, B. S Zou, and Yan Zhang, “Mechanically and electronically controlled molecular switch behavior in a compound molecular device,” Appl. Phys. Lett. 97 103506 (2010).
77. Xinke Wang, Ye Cui, Wenfeng Sun, JiaSheng Ye, and Yan Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A, 27 2387-2393 (2010).
78. Yanhua Wang, Yuegang Chen, Yan Zhang, and Shutian Liu, “Can the point source method be used for design of sub-wavelength surface plasmon devices?” Optik 121 1702-1707 (2010).
79. Xinke Wang, Ye Cui, Dan Hu, Wenfeng Sun, Jiasheng Ye, and Yan Zhang, “Terahertz real-time imaging with balanced electro-optic detection,” Opt. Commun. 283 4626-4632. (2010).
80. Jianlong Liu, Jie Lin, Haifa Zhao, Yan Zhang, and Shutian Liu, “Numerical analysis of surface plasmon nanocavities formed in thickness-modulated metal-insulator-metal waveguides,” Chin. Phys. B, 19 054201 (2010).
81. Dan Hu and Yan Zhang, “Localized surface plasmons-based transmission enhancement of terahertz radiation through metal aperture arrays,” Optik, Vol. 121 1423-1426 (2010).
82. Xinke Wang, Lei Hou, and Yan Zhang, “Continuous-wave terahertz interferometry with multiwavelength phase unwrapping,” Appl. Opt. Vol. 49 5095-5102 (2010).
83. Xinke Wang, Wenfeng Sun, and Yan Zhang, “A novel normal reflection terahertz spectrometer,” Optik, 121 1148-1153 (2010) .
84. Zhiqian Fan, Keqiu Chen, Qing Wang, and Yan Zhang, “Electronic transport properties in a bimolecular device modulated with different side groups,” J. Appl. Phys. Vol. 107 113713 (2010).
85. Jianlong Liu, Guangyu Fang, Haifa Zhao, Yan Zhang, and Shutian Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D-Appl. Phys., Vol. 43 055103 (2010).
86. Qiaofen Zhu, Dayong Wang, and Yan Zhang, “Coupled metallic ring gap waveguide,” Opt. Comm. 283 1542-2545 (2010).
87. Jiasheng Ye and Yan Zhang, “Rigorous electromagnetic analysis of metallic cylindrical focusing micromirrors with high diffraction efficiency, achromatic aberration and long focal depth,” Opt. Comm.283 1661-1667 (2010).
88. Chuqing Liu, Jiasheng Ye, and Yan Zhang, “Thermally tunable THz filter based on surface plasmon,” Opt. Comm. 283 865-868 (2010).
89. Tingting Bian, Benyuan Gu, and Yan Zhang, “Transmitted interference effect of double metallic nanoslits composed of a slit and a square-funnel slit.” Opt. Commun., Vol. 283 608-612 (2010).
90. Jianlong Liu, Haifa Zhao, Yan Zhang, and Shutian Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B Las. and Opt.,Vol. 98 797-802 (2010).
91. Bin Hu, Benyuan Gu, Yan Zhang, and Ming Liu, “Various evaluations of diffractive transmitted field of light through one-dimensional metallic grating with subwavelength slits,” Cent. Eur. J. Phys. Vol. 8 448-454 (2010).
92. Yanhua Wang, Yuegang Chen, Yan Zhang, and Shutian Liu, “Influence of slits’ width on the electromagnetic transmission of a periodic metallic grating,” Optik Vol. 120 1016-1020 (2009).
93. Xinke Wang, Ye Cui, Dan Hu, Wenfeng Sun, Jiasheng Ye, and Yan Zhang, “Terahertz quasi-near-field real-time imaging,” Opt. Comm. 24 4683-4687 (2009).
94. 鄭顯華, 王瑛琦, 張巖, “金屬亞波長(zhǎng)狹縫中凹槽對(duì)其透過(guò)特性的影響”, 物理學(xué)報(bào), Vol. 58, 471-476 (2009).
95. Weining Wang, Hongqi Li, Yan Zhang, Cunlin Zhang, “Correlations between Terahertz Spectra and Molecular Structures of 20 Standard alpha-Amino Acids,” ACTA PHYSICO-CHIMICA SINICA, 25 2074 (2009).
96. Wenfeng Sun, Xinke Wang, and Yan Zhang, “Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy,” Chin. Phys. Lett. 26 114210 (2009).
97. Jianlong Liu, Guangyu Fang, Haifa Zhao, Yan Zhang, Shutian Liu, “Surface Plasmon reflector based on serial stub structure,” Optics Express Vol. 17 20134 (2009).
98. Bin Hu, Ben-Yuan Gu, Yan Zhang, and Ming Liu, “Transmission interference tuned by an external static magnetic field in a two-slit structure,” Appl. Phys. Lett. 95 121103 (2009).
99. Yan Zhang, Bo Wang, and Zhili Dong, “Enhancement of imaging hiding by exchanging two phase masks,” J Opt. A: Pure and Appl. Opt. 11 125406 (2009).
100. Tingting Bian and Yan Zhang, “Transmission properties of photonic quantum well composed of dispersive materials,” Optik, 120 736-740 (2009).
101. Xingxing Zhao, Qiaofen Zhu, and Yan Zhang, “Design of photonic crystal filter in the terahertz range,” Chinese Physics B 18 2864-2867 (2009).
102. Gui-Lin Chen, Xiaofang Peng, Ke-Qiu Chen, and Yan Zhang, “The evolution of the localized plasmon modes in a semi-infinite superlattice with cap layer,” Phys. E-Low Dim. Sys. Nanostru., 41 1347-1352 (2009).
103. Bo Wang and Yan Zhang, “Double images hiding based on optical interference,” Optics Comm. 282 3439-2443 (2009).
104. Yingxin Wang, Zhiqiang Chen, Zhiran Zhao, Li Zhang, Kejun Kang, and Yan Zhang, “Restoration of terahertz signals distorted by atmospheric water vapor absorption,” J. Appl. Phys. 105 103105 (2009).
105. Yun Ren, Ke-Qiu Chen, Qing Wan, B. S. Zou, and Yan Zhang, “Transitions between semiconductor and metal induced by mixed deformation in carbon nanotube devices,” Appl. Phys. Lett. Vol. 94 183506 (2009).
106. 陳龍旺,孟闊,張巖,“小波變換在太赫茲時(shí)域光譜分析中的應(yīng)用,”光譜學(xué)與光譜分析 29 1168-1171 (2009).
107. Liangliang Zhang, Hua Zhong, Yan Zhang, Nick Karpowicz, Cunlin Zhang, Yuejin Zhang, Xicheng Zhang, “Terahertz wave focal-plane multiwavelength phase imaging, “ J. Opt. Soc. A, 26 1187-1190 (2009).
108. Jiasheng Ye, Yan Zhang, and Kazuhiro Hane, “Improved first Rayleigh-Sommerfeld method applied to metallic cylindrical focusing micro mirrors,” Opt. Express 17 7348-7360 (2009).
109. Xiao-Jiao Zhang, Meng-Qiu Long, Ke-Qiu Chen, Z. Shuai, Qing Wan, B. S. Zou and Yan Zhang, “Electronic transport properties in doped C-60 molecular devices,” Appl. Phys. Lett. 94 073503 (2009).
110. Qiaofen Zhu and Yan Zhang, “Defect modes and wavelength tuning of one dimensional photonic crystal with Lithium Niobate,” Optik 120 195-198 (2009).
111. Yanhua Wang, Yinqi Wang, Yan Zhang, and Shutian Liu, “Transmission through metallic array slits with perpendicular cuts,” Opt. Express 17 5014-5022 (2009).
112. Qiaofen Zhu, Dayong Wang, and Yan Zhang, “Enlargement of the band gap in the metal-insulator-metal waveguide by using the metal heterowaveguide,” Opt. Comm., 282 1116-1119 (2009).
113. Fang Xie, Keqiu Chen, Y. G. Wang, Qing Wan, B. S. Zhou, and Yan Zhang, “Acoustic phonon transport and ballistic thermal conductance through a three-dimensional double-bend quantum structure,” J. Appl. Phys. Vol. 104 054312 (2008).
114. Bin Hu, Ben-Yuan Gu, Bi-Zhen Dong, and Yan Zhang, “Optical transmission resonances tuned by external static magnetic field in an n-doped semiconductor grating with subwavelength slits”, Optics Communications Vol. 281 6120–6123 (2008).
115. Ranxi Zhang, Ye Cui, Wenfeng Sun, and Yan Zhang, “Polarization information for terahertz imaging,” Applied Optics Vol. 47 6422-6427 (2008)
116. Yan Zhang and Bo Wang, “Optical image encryption based on interference,” Opt. Lett. Vol. 33 2443-2445 (2008).
117. Wenfeng Sun, Yunsong Zhou, Xinke Wang, and Yan Zhang, “External electric field control of THz pulse generation in ambient air,” Opt. Expr. Vol. 16 16573 (2008). (Selected by Virtual Journal of THz Science & Technology, October 2008 Issue).
118. Yan Zhang, Weihui Zhou, Xinke Wang, Ye Cui, and Wenfeng Sun, “Terahertz digital holography,” Strain, Vol 44 380-385. (2008).
119. Yingxin Wang, Ziran Zhao, Zhiqiang Chen, Yan Zhang, Li Zhang, and Kejun Kang, “Suppression of spectral interferences due to water-vapor rotational transitions in terahertz time-domain spectroscopy,” Opt. Lett. Vol. 33 1354-1356 (2008).
120. 孟闊,王艷花,陳龍旺,張巖, “太赫茲波段下金屬狹縫的透射增強(qiáng)特性研究,” 物理學(xué)報(bào),Vol. 57 3198-3205 (2008).
121. Qiaofen Zhu, Dayong Wang, and Yan Zhang, “Design of defective nonlinear photonic crystals for multiple wavelengths second harmonic generation,” J. Opt. A: Pure Appl. Opt, Vol. 10 025201 (2008).
122. Fang Xie, Ke-Qiu Chen, Y. G. Wang, and Yan Zhang, “Effect of the evanescent modes on ballistic thermal transport in quantum structures,” J. Appl. Phy. Vol. 103 084501 (2008).
123. Bin Hu, Ben-Yuan Gu, Bi-Zhen Dong, and Yan Zhang, “Transmission resonances of two-constituent metal/dielectric gratings with subwavelength slits,” Appl. Phys. Lett. Vol. 92 151901 (2008).
124. Xinke Wang, Ye Cui, Wenfeng Sun, and Yan Zhang, Cunlin Zhang, “Terahertz pulse reflective focal-plane tomography” Optics Express, 15 14369-14375 (2007), (Selected by Virtual Journal of THz Science & Technology, October 2007 Issue).
125. Yingxin Wang, Ziran Zhao, Zhiqiang Chen, Kejun Kang, Bin Feng, and Yan Zhang, “Terahertz absorbance spectrum fitting method for quantitative detection of concealed contraband,” J. Appl. Phys. 102 (11): 113108 (2007). (Selected by Virtual Journal of THz Science & Technology, December 2007 Issue).
126. Yue-gang Chen, Yanhua Wang, Yan Zhang, and Shutian Liu, “Waveguide resonance of subwavelength metallic slits,” Chinese Physics, Vol. 16 1315-1319 (2007).
127. Zhengwei Zhang, Yan Zhang, Guozhong Zhao, and Cunlin Zhang, “Terahertz time domain spectroscopy for explosive imaging,” Optik Vol. 118 325-329 (2007).
128. Xiao-Fang Peng, Ke-Qiu Chen, BS Zou, Yan Zhang, “Ballistic thermal conductance in a three-dimensional quantum wire modulated with stub structure,” Appl. Phy. Lett. Vol. 90 193502 (2007), (Selected by Virtual Journal of Nanoscale Science & Technology, May 21, 2007 issue).
129. Yuegang Chen, Yanhua Wang, Yan Zhang, Shutian Liu, “The resonance absorption of metallic plate with subwavelength hole array,” Chin. Phys. Lett. Vol. 24 1084-1087 (2007).
130. Yan Zhang and Qiaofen Zhu, “Investigation of coupled third harmonic generation in one-dimensional defective nonlinear photonic crystals,” Optics Express, Vol. 15 6908-6913 (2007).
131. Peng Zhao, Yanhuan Wang, and Yan Zhang, “Numerical investigation of the parameters dependences of nanolithography by using micro-structured metal grating,” J. Opt. A: Pure Appl. Opt. Vol. 9 506-510 (2007).
132. Yue-gang Chen, Yanhua Wang, Yan Zhang, and Shutian Liu, “Numerical investigation of the transmission enhancement through subwavelength hole array,” Opt. Comm., Vol. 274 236-240 (2007).
133. Yanhua Wang, Yue-gang Chen, Yan Zhang, and Shutian Liu, “Influence of grooves in the electromagnetic transmission of periodic metallic grating filter by finite-difference time-domain calculations,” Opt. Comm., Vol. 271 132-136 (2007).
134. 周春大, 張巖, “基于微位移技術(shù)提高CCD分辨率的方法,” 光子學(xué)報(bào), Vol. 35 1969-1974 (2006).
135. Meihong Lu, Jingling Shen, Ning Li, Yan Zhang, Cunlin Zhang, Laishun Liang, and Xiaoyu Xu, “Detection and identification of illicit drugs using terahertz imaging,” J. Applied Physics Vol. 100 103104 (2006), (Selected by Virtual Journal of THz Science & Technology, November 2006 Issue).
136. Liangliang Zhang, Yan Zhang, Cunlin Zhang, Yuejin Zhao, and Xiaohua Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Optics Letters, Vol. 31 3668-3670 (2006), (Selected by Virtual Journal of THz Science & Technology, December 2006 Issue) .
137. Chun-Hiu Niu, Yan Zhang, and Ben-Yuan Gu, “Optical encryption and verification technique for information coding with multiple-wavelengths in the Fresnel domain,” Optik 117 516-524 (2006).
138. Yue-gang Chen, Yan Zhang, and Shutian Liu, “Investigation of one dimensional photonic crystals composed of dispersive materials,” Optics Communications, Vol. 265 542-550 (2006).
139. Zhenwei Zhang, Weili Cui, Yan Zhang, and Cunlin Zhang, “Terahertz time-domain spectroscopy imaging”,J. Infrar. Mill. Waves,Vol.25 217-220 (2006).
140. Lantao Guo, Ying Hu, Yan Zhang, Cunlin Zhang , Yunqing Chen , and X. -C. Zhang, “Vibration spectrum of HNIW investigated using terahertz time-domain spectroscopy,” Optics Express, Vol. 14, No. 8 3654 (2006), (Selected by Virtual Journal of THz Science & Technology, April 2006 Issue).
141. Weili Cui, Zhenwei Zhang, Yuan Han, Yan Zhou, Cumin Zhang, Yan Zhang, and Guozhong Zhao, “Transmission properties of terahertz radiation through a single sub-wavelength circular hole in the metal foil,” Chinese Optics Letters Vol. 3 S74-76 (2005).
142. Meihong Lu, Yan Zhang, Jinhai Sun, Sijia Chen, Ning Li, Guozhong Zhao, and Jingling Shen, “Identification of Maize seeds by Terahertz Scanning Imaging,” Chinese Optics Letters, Vol. 3 S239-241 (2005).
143. Chun-Hui Niu, Yan Zhang and Ben-Yuan Gu, “A new distribution scheme of decryption keys used in optical verification system with multiple-wavelength information,” Chinese Physics, Vol. 14 1996-2003. (2005).
144. Yan Zhang, Benyuan Gu, and Chung-Ping Liu, “Investigation of properties of the confined states in photonic quantum-well structures,” International Journal of Modern Physics B, Vol. 19 3705-3712. (2005).
145. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, and Hans J. Tiziani, “Reconstruction of in-line holograms using phase retrieval algorithms,” Physica Scripta, T118 102-106 (2005).
146. Giancarlo Pedrini, Wolfgang Osten, Yan Zhang, “Wave front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. Vol. 30: 833-835 (2005).
147. Yan Zhang, De-Xiang Zheng, Jing-Ling Shen, Cun-Lin Zhang, “Characterization of diffraction patterns directly from in-line holograms using the Gabor transform,” Optik, 116, 87-91 (2005).
148. De-Xiang Zheng, Yan Zhang, Jing-Ling Shen, Cun-Lin Zhang, “Wave field reconstruction from a hologram sequence,” Optics Commun., 249 73-77. (2005).
149. Chun-Hui Niu, Ben-Yuan Gu, Bi-Zhen Dong, and Yan Zhang, “A new method for generating axially symmetric and radially polarized beam,” J. Phys. D: Appl. Phys., 38 827-832. (2005).
150. 張敏,匡武, 廖延彪, 張巖, 王東寧, 靳偉,“基于光纖激光器的有源腔氣體吸收測(cè)量網(wǎng)絡(luò),” 中國(guó)激光, 32 982-986 (2005)。
151. De-Xiang Zheng, Yan Zhang, Jing-Line Shen, Cun-Lin Zhang, “Theory and applications of the digital holography,” Wuli (Physics), 11 843-847 (2004) (In Chinese).
152. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, Hans J. Tiziani, “Reconstruction of in-line digital holography with two intensity measurements,” Opt. Lett., 29 1787-1789 (2004).
153. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, Hans J. Tiziani, “Applications of the fractional transforms to object reconstruction from in-line holograms,” Opt. Lett., 29 1793-1795 (2004).
154. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, Hans J. Tiziani, “Phase retrieval microcopy for quantitative phase-contrast imaging,” Optik., 115 94-97 (2004).
155. Yan Zhang, Min Zhang, Wei Jin, H. L. Ho, X. H. Fang, M. S. Demokan, B.Culshaw, and G. Stewart, ‘‘Erratum ‘Investigation of erbium-doped fiber laser intra-cavity absorption sensor’,” Opt. Commu., 234 435-441 (2004).
156. Yan Zhang and Ben-Yuan Gu, “Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies,” Optics Express 12 5910-5915 (2004).
157. Yan Zhang, Min Zhang, Wei Jin, H. L. Ho, M. S. Demokan, B.Culshaw, and G. Stewart, ‘‘Investigation of erbium-doped fiber laser intra-cavity absorption sensor,” Opt. Commu., 232 295-301 (2004).
158. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, Hans J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Optics Express, 11 3234-3241 (2003).
159. Yan Zhang, Giancarlo Pedrini, Wolfgang Osten, Hans J. Tiziani, “Image reconstruction for in-line holography using the Yang-Gu algorithm,” Applied Optics, 42 6452-6457 (2003).
160. Yan Zhang, Min Zhang, and Wei Jin, “Multi-point, fiber-optic gas detection with intra-cavity spectroscopy,” Opt. Commu., 220 361-364 (2003).
161. Yan Zhang, Min Zhang, and Wei Jin, “Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor,” Sensors and Actuators A: Physical, 104 (2) 183-187 (2003).
162. Shi CZ, Chan CC, Zhang M, Ju J, Jin W, Liao YB, Yan Zhang, Zhou Y, “Simultaneous interrogation of multiple fiber Bragg grating sensors for dynamic strain measurements,” J Opt. & Adv. Mat., 4 (4) 937-941 (2002).
163. Min Zhang, Yan Zhang, Dongning Wang, Wei. Jin, “Fiber ring laser intra-cavity absorption spectroscopy for gas sensing,” Int. J. Nonlinear Sci., 3 569-572 (2002).
164. Yan Zhang, Cheng-Han Zheng, and Naohiro Tanno, “Optical encryption based on iterative fractional Fourier Transform,” Opt. Commu., 202 277-285 (2002).
165. Yan Zhang, Manabu Sato, and Naohiro Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun., 192 183-192 (2002).
166. Yan Zhang, W. Jin, H.B.Yu, M Zhang, Y. B. Liao, H. L. Ho, M. S. Demokan, G. Stewart, B. Culshaw, and Y. H. Li, “Novel intra-cavity sensing network based on mode-locked fiber laser,” J. IEEE Phonics Technology Letters, 14 1336-1338 (2002).
167. Yan Zhang, Ben-Yuan Gu, and Naohiro Tanno, “Optical fractional derivative matched correlator,” Optical Review, 8 318-322 (2001).
168. Yan Zhang and Ben-Yuan Gu, “Optimal design of aperiodically poled lithium niobate crystals for multiple wavelengths parametric amplification,” Opt. Commun., 192 417-425 (2001).
169. Yan Zhang, Manabu Sato, and Naohiro Tanno, “Characters of the semiconductor laser with strong feedback,” Optik, 112 91-96 (2001).
170. Yan Zhang, Manabu Sato, and Naohiro Tanno, “Resolution improvement in optical coherence tomography by optimal synthesis of light emitting diodes,” Opt. Lett., 26 205-207 (2001).
171. Yan Zhang, Manabu Sato, and Naohiro Tanno, “Resolution improvement in optical coherence tomography based on destructive interference,” Opt. Commun., 187 65-70 (2001).
172. Ben-Yuan Gu, Yan Zhang, and Xue-Hua Wang, “Electron transport acrossone-dimensional modulated superlattices in a quantum waveguide in magnetic fields,” J. Appl. Phy., 88 300-308 (2000).
173. Ben-Yuan Gu, Yan Zhang, and Bi-Zhen Dong, “Investigations of harmonic generations in aperiodic optical superlattices,” J. Appl. Phy., 87 7629-7637 (2000).
174. Yan Zhang, Tadayuki Funaba, and Naohiro Tanno, “Self-fractional Hankel functions and their properties,” Opt. Commun., 176 71-75 (2000).
175. Yan Zhang, Guo-Zhen Yang, Ben-Yuan Gu, and Bi-Zhen Dong, “Optical wavelet-based feature extraction of image with use of computer-generated hologram,” Optik, 111 45-47 (2000).
176. Ben-Yuan Gu, Bi-Zhen Dong, Yan Zhang, and Guo-Zhen Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phy. Lett., 75 2175-2177 (1999).
177. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, “Novel implementation of the Radon-Wigner display,” Opt. Commun., 166 21-24 (1999).
178. Yan Zhang, Ben-Yuan Gu, and Guo-Zhen Yang, “Optical fractional Fourier transform and its applications,” Physics (WuLi), 28(8) 484-490 (1999) (In Chinese).
179. Rong Liu, Bi-Zhen Dong, Yan Zhang, Ben-Yuan Gu, Guo-Zhen Yang, Wan-Jing Xu, and Hong-Du Liu, “Experiments of diffractive phase elements that implement several optical functions simultaneously in a rotationally symmetric optical system,” Optik, 110 118-122 (1999).
180. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, “Rotationally symmetric beam shaping in the fractional Fourier transform domain,” Optik, 110 61-65 (1999).
181. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, “New optical configurations for implementing Radon-Wigner display: Matrix analysis approach,” Opt. Commun., 160 292-300 (1999).
182. Yan Zhang, Ben-Yuan Gu, and Guo-Zhen Yang, “Generation of the self-fractional Hankel functions,” J. Phy. A: Math. Gen., 31 9769-9772 (1998).
183. Yan Zhang and Ben-Yuan Gu, “Rotation-invariant and controllable space-variant correlation,” Appl. Opt., 37 6256-6261 (1998).
184. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, “A new kind of Windowed fractional transforms,” Opt. Commun., 152 127-134 (1998).
185. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, and Guo-Zhen Yang, “Optical implementations of the Radon-Wigner display for one-dimensional signals,” Opt. Lett., 23 1126-1128 (1998).
186. Yan Zhang, Bi-Zhen Dong, Ben-Yuan Gu, and Guo-Zhen Yang, “Beam shaping in the fractional Fourier transform domain,” J. Opt. Soc. Am. A, 15 1114-1120 (1998).
187. Yan Zhang, Ben-Yuan Gu, Bi-Zhen Dong, Guo-Zhen Yang, Hongwu Ren, Xueru Zhang, and Shutian Liu, “Fractional Gabor transform,” Opt. Lett., 22 1583-1585 (1997).
188. Bi-Zhen Dong, Yan Zhang, Ben-Yuan Gu, and Guo-Zhen Yang, “Numerical investigation of phase retrieval in a fraction Fourier transform,” J. Opt. Soc. Am. A, 14 2709-2714 (1997).
189. Shutian Liu, Jiuxing Jiang, Yan Zhang, and Jingde Zhang, “Generalized fractional Fourier transform,” J. Phys. A: Math. Gen., 30 973-981 (1997).
190. Shutian Liu, Jingde Zhang, and Yan Zhang, “Properties of the fractionalization of a Fourier transform,” Opt. Commun. 133 50-54 (1997).
191. Shutian Liu, Jiandong Xu, Yan Zhang, Lixue Chen, and Chunfei Li, “General optical implementations of fractional Fourier transform,” Opt. Lett., 20 1053-1055 (1995).
192. Shutian Liu, Jiandong Xu, Yan Zhang, and Chunfei Li, “Optical implementations of the fractional Fourier transform using lenses,” Acta Optica Sinica, 10 1044-1048 (1995) (in Chinese).
二. Book Chapters
1. Yan Zhang, “Simulated annealing-single and multiple objective problems,” Chapter 5 “Optimization design of nonlinear optical frequency conversion devices using simulated annealing algorithm,” InTech (2012).
2. Yan Zhang, “New Developments in Lasers and Electro-Optics Research,” Chapter 5 “In-Line Hologram Reconstruction by Using Iterative Algorithms,” NOVA SCIENCE PUBLISHERS, INC. NEW YORK (2006)
3. 張敏,何海律,張巖等,“光纖傳感技術(shù)新進(jìn)展” 第四章“基于光纖激光器的有源腔氣體吸收測(cè)量技術(shù)”, 科學(xué)出版社,北京, 2005。
4. 張存林,張巖,趙國(guó)忠,沈京玲,王衛(wèi)寧,胡穎,周慶莉,孫文峰,“太赫茲感測(cè)與成像”,國(guó)防工業(yè)出版社,北京,2008
學(xué)術(shù)交流:
1. 第十一屆全國(guó)光學(xué)前沿問(wèn)題討論會(huì) 中國(guó)會(huì)議 2015-10-09
2. 第二屆全國(guó)危險(xiǎn)物質(zhì)與安全應(yīng)急技術(shù)研討會(huì) 中國(guó)會(huì)議 2013-11-14
3. 第十屆全國(guó)光學(xué)前沿問(wèn)題討論會(huì) 中國(guó)會(huì)議 2013-10-19
4. 第九屆全國(guó)光學(xué)前沿問(wèn)題討論會(huì) 中國(guó)會(huì)議 2011-10-10
5. 中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì) 中國(guó)會(huì)議 2011-09-05
6. MIP09 Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, Sanxia, China 2009.
7. International Conference on Optical Instrument and Technology Shanghai, China 21 – 25 October 2009.
8. 8th International Conference On Optical Communications & Networks, Beijing, China 15 – 17 September 2009.
9. Proceedings of SPIE-The International Society for Optical Engineering SPDI2009 (2009)
10. CLEO Europe, Munich, June 16-20 2009.
11. Proceedings of SPIE-The International Society for Optical Engineering (2009).
12. The 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, September 15th and 19th, 2008.
13. The International Conference on Laser Applications in Life Science 2008, Dec. 4-6, 2008. Invited.
14. PIERS in Hangzhou, March 23-28, 2008 China.
15. 第十三屆基礎(chǔ)光學(xué)與光物理學(xué)術(shù)討論會(huì) 中國(guó)會(huì)議 2008-07-25
16. Proceedings of SPIE-The International Society for Optical Engineering, (2007), invited.
17. The 6th Asia-Pacific Conference on Near-Field Optics, Huangshan, June 19-25 2007, invited.
18. 第七屆全國(guó)光學(xué)前沿問(wèn)題討論會(huì) 中國(guó)會(huì)議 2007-10
19. Proceedings of IRMMW-THz 2006 Shanghai, Sep. 18-22, 2006.
20. Proceeding of SPIE-The International Society for Optical Engineering, 2006.
21. 第十三屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì) 中國(guó)會(huì)議 2006-10
22. 中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì) 中國(guó)會(huì)議 2006-09
23. Proceedings of the SPIE-The International Society for Optical Engineering, 2005
24. 中國(guó)光學(xué)學(xué)會(huì)光電技術(shù)專(zhuān)業(yè)委員會(huì)成立二十周年暨第十一屆全國(guó)光電技術(shù)與系統(tǒng)學(xué)術(shù)會(huì)議 中國(guó)會(huì)議 2005-08
25. 2005年中國(guó)光學(xué)學(xué)會(huì)全息與光學(xué)信息處理專(zhuān)業(yè)委員會(huì)年會(huì)暨建會(huì)20周年紀(jì)念會(huì) 中國(guó)會(huì)議 2005
26. Proceedings of the SPIE-The International Society for Optical Engineering,2004.
27. 第十一屆基礎(chǔ)光學(xué)與光物理討論會(huì) 中國(guó)會(huì)議 2004-11-29
28. 中國(guó)光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì) 中國(guó)會(huì)議 2004
29. APHYS-2003 International Conference, Badajoz, Spain, October 13-18th。2003.
30. Proceedings of the SPIE - The International Society for Optical Engineering 2002.
31. SPIE Photonics Asia, 14 - 18 October 2002 Shanghai, China.
32. International Conference on Micro and Nano Systems 2002 (ICMNS 2002) Kunming, China, 11-14 Aug. (2002).
33. Accepted by SPIE Advanced Photonic Sensors and Applications, 8-10 November 2000, Beijing, China..2000 .
34. Accepted by SPIE Advanced Photonic Sensors and Applications, 8-10 November 2000, Beijing, China.
35. Accepted by SPIE Photonics West 2000, 22-28 January 2000, SanJose, Californian USA .2000.
36. Accepted by SPIE Optoelectronic'98 Integrated Devicesand Applications, Jan 24 - 30, San Jose, California, USA. 1998.
38. Accepted by the 7th Asia Pacific Physics Conference, Aug. 19-23, Beijing. 1997.
榮譽(yù)獎(jiǎng)勵(lì):
1.黑龍江省優(yōu)秀科技論文獎(jiǎng)(1996年)。
2.日本學(xué)術(shù)振興會(huì)博士后基金(1999年)。
3.德國(guó)洪堡基金(2002年)。
4.北京市科技新星(2004年)。
5.北京市優(yōu)秀人才資助(2005年)。
6.北京市“太赫茲波譜與成像”科技創(chuàng)新團(tuán)隊(duì)核心成員(2006年)。
7.北京市中青年骨干教師(2007年) 。
8.中國(guó)分析測(cè)試協(xié)會(huì)科學(xué)技術(shù)獎(jiǎng)(三等獎(jiǎng))“基于太赫茲光譜和成像技術(shù)的毒品檢測(cè)方法”(排名第四)(2007年) 。
9.教育部新世紀(jì)優(yōu)秀人才(2012年)。
10.北京市長(zhǎng)城學(xué)者 (2014年)。
11.北京市百千萬(wàn)人才工程(2014年)。
12.中國(guó)產(chǎn)學(xué)研合作創(chuàng)新成果獎(jiǎng)“太赫茲脈沖波焦平面成像系統(tǒng)”(排名第一)(2014年)。
13.北京市高層次創(chuàng)新創(chuàng)業(yè)人才支持計(jì)劃(2015年)。
解碼太赫茲
——首都師范大學(xué)物理系教授張巖
太赫茲波是指頻率在0.1THz到10THz范圍的電磁波譜,介于微波和遠(yuǎn)紅外波之間,其低頻率段與微波相重合,而在高頻率段則與紅外光波相重合,兼具了電子學(xué)和光子學(xué)的優(yōu)勢(shì)。太赫茲波是電磁波譜中唯一沒(méi)有獲得較全面研究并很好加以利用的最后一個(gè)波譜區(qū)間。
事實(shí)上,地球上的一切生命,有機(jī)物、無(wú)機(jī)物等都會(huì)因分子或原子的熱振動(dòng)產(chǎn)生太赫茲波,天然的太赫茲波充滿了我們的生活。而其長(zhǎng)久未被全面研究和開(kāi)發(fā)的原因,是缺乏高效率的發(fā)射源以及靈敏的探測(cè)設(shè)備,所以才會(huì)出現(xiàn)了“太赫茲空隙”。
近年來(lái),超快激光技術(shù)和半導(dǎo)體集成技術(shù)的發(fā)展,為太赫茲技術(shù)的研究提供了必要的手段,人類(lèi)對(duì)太赫茲的認(rèn)識(shí)得以不斷深入,于是關(guān)于太赫茲波的獨(dú)特優(yōu)勢(shì)和更廣闊的應(yīng)用空間不斷被挖掘出來(lái)—
太赫茲波的單光子能量低,且對(duì)非極性分子組成的物質(zhì)如化纖、棉布等具有很好的穿透性,大多數(shù)生物大分子的特征吸收峰都落在太赫茲波段,因此,太赫茲波在安全檢查、醫(yī)學(xué)成像、半導(dǎo)體、環(huán)境監(jiān)測(cè)、污損檢測(cè)、移動(dòng)通信、雷達(dá)和天文應(yīng)用等領(lǐng)域具有重要的潛在應(yīng)用價(jià)值。
自2000年起,美國(guó)、歐盟等發(fā)達(dá)國(guó)家設(shè)定了多個(gè)專(zhuān)項(xiàng)計(jì)劃來(lái)推動(dòng)太赫茲輻射源、檢測(cè)技術(shù)和各種應(yīng)用研究的發(fā)展。在亞洲,韓國(guó)、新加坡、日本等國(guó)也都積極開(kāi)展了這方面的研究工作。同一時(shí)期的中國(guó),太赫茲研究也開(kāi)始起步。
2001年,首都師范大學(xué)太赫茲實(shí)驗(yàn)室建立,成為國(guó)內(nèi)最早開(kāi)展太赫茲研究的標(biāo)桿團(tuán)隊(duì)之一。為了取得更快發(fā)展,實(shí)驗(yàn)室加大了人才引進(jìn)力度,先后引進(jìn)多名青年研究骨干。張巖,就是在這時(shí)候加入,從此闖進(jìn)了一個(gè)全新的世界。
交叉融合,謀求創(chuàng)新
張巖回國(guó)是2003年11月。在這之前,他擁有豐富而扎實(shí)的研究和求學(xué)經(jīng)歷—
2002—2003年,在德國(guó)洪堡基金的資助下,張巖在德國(guó)斯圖加特大學(xué)應(yīng)用光學(xué)研究所任洪堡研究員,從事數(shù)字全息重建算法的研究。他提出了利用相位恢復(fù)算法來(lái)進(jìn)行數(shù)字全息重建的新方案,得到了同行的重視和肯定。這部分內(nèi)容作為美國(guó)Nova Science出版社的新書(shū)“New Developments in Lasers and Electro-Optics Research”中的一章,已經(jīng)出版發(fā)行。
2001—2002年,張巖在香港理工大學(xué)電子工程系從事光纖氣體傳感器研究。他將激光內(nèi)腔光譜儀同光纖光學(xué)相結(jié)合,制成了高靈敏度的光纖氣體傳感器,靈敏度提高了100倍,并提出了多種復(fù)用方法,推進(jìn)了光纖內(nèi)腔傳感器的應(yīng)用。這部分內(nèi)容作為科學(xué)出版社出版的《光纖傳感技術(shù)新進(jìn)展》一書(shū)中的一章,已經(jīng)出版發(fā)行。
1999—2001年,張巖在日本學(xué)術(shù)振興會(huì)博士后基金的資助下,在日本山形大學(xué)工學(xué)部從事生物成像研究。他提出了多種提高光學(xué)相干層析分辨率的方法,主要工作發(fā)表在Opt. Lett.上,得到了國(guó)際同行的重視,并被應(yīng)用在實(shí)際儀器上。
而在更早之前,張巖的博士和碩士學(xué)位分別完成于中科院物理研究所和哈爾濱工業(yè)大學(xué)。在這個(gè)階段,他跟隨導(dǎo)師開(kāi)展了利用光學(xué)分?jǐn)?shù)傅立葉變換進(jìn)行信息處理的研究,促進(jìn)了分?jǐn)?shù)傅立葉變換在光學(xué)信息處理領(lǐng)域中的應(yīng)用,是我國(guó)最早開(kāi)展光學(xué)分?jǐn)?shù)傅立葉變換的研究學(xué)者之一。
不難看出,張巖的科研道路很順利,所獲成果頗多,但研究方向的不斷轉(zhuǎn)換卻弊大于利。他自己也在困惑:在國(guó)外漂來(lái)漂去,研究方向換來(lái)?yè)Q去,總感覺(jué)是為別人服務(wù)、為別人打工,還是想做點(diǎn)自己的事情。
于是,張巖決定回國(guó),一是找個(gè)地方踏踏實(shí)實(shí)地瞄準(zhǔn)一個(gè)方向做科研,二是回國(guó)做點(diǎn)貢獻(xiàn),不辜負(fù)老師和國(guó)家的培養(yǎng)。加入首都師范大學(xué)太赫茲實(shí)驗(yàn)室,是博士階段導(dǎo)師楊國(guó)楨院士搭橋。張巖說(shuō),當(dāng)時(shí)對(duì)太赫茲了解得很少,可以說(shuō)是從零開(kāi)始。
面對(duì)未知的世界,方向比努力更重要。在研究方向的選擇上,張巖堪稱(chēng)一個(gè)謀求交叉融合的專(zhuān)家。經(jīng)過(guò)深入了解和分析,他鎖定太赫茲焦平面成像技術(shù)。“我以前的研究都和成像相關(guān),這能發(fā)揮我的優(yōu)勢(shì),而且要想做好學(xué)問(wèn),第一是能夠把所學(xué)交叉融合,第二是要走特色之路。”
據(jù)介紹,太赫茲焦平面成像技術(shù)融合了太赫茲技術(shù)、光學(xué)相干層析成像技術(shù)、數(shù)字全息技術(shù)等,是典型的交叉學(xué)科方向,且國(guó)內(nèi)當(dāng)時(shí)無(wú)人從事這項(xiàng)研究,正好符合張巖的要求。
科學(xué)研究的路從來(lái)都不是一帆風(fēng)順的,尤其是在當(dāng)時(shí)仍幾乎是一片“處女地”的太赫茲領(lǐng)域。空白,意味著艱難。
張巖介紹,太赫茲波在電磁波譜中的特殊位置,決定了太赫茲波與物質(zhì)相互作用時(shí)呈現(xiàn)出不同于微波和光波的獨(dú)特性質(zhì),使得太赫茲技術(shù)擁有得天獨(dú)厚的優(yōu)勢(shì);同時(shí)也是因?yàn)檫@個(gè)特殊位置,使成熟的高頻微波和光電子技術(shù),以及相應(yīng)的傳統(tǒng)器件在太赫茲波段的實(shí)現(xiàn)與應(yīng)用受到限制。
可以這么說(shuō),研究太赫茲就像面對(duì)一鍋麻辣鮮香的水煮魚(yú),好吃,但刺多、“難”吃。剔掉魚(yú)刺,才能大飽口福。張巖這十來(lái)年的研究,就是不斷“剔掉魚(yú)刺、挖出魚(yú)肉”的過(guò)程。
在北京市科技新星計(jì)劃、北京市留學(xué)人員擇優(yōu)資助等人才項(xiàng)目的資助下,張巖腳踏實(shí)地,銳意進(jìn)取,逐步成長(zhǎng)為實(shí)驗(yàn)室的核心成員。他組建了自己的團(tuán)隊(duì),帶領(lǐng)他們專(zhuān)注開(kāi)展太赫茲波譜與成像、太赫茲波段表面等離子光學(xué)和微納光電子器件設(shè)計(jì)等方面的工作,并在行業(yè)內(nèi)嶄露頭角。
他們?cè)谔掌澇上穹矫嫣岢隽硕嗖ㄩL(zhǎng)成像,偏振成像,實(shí)時(shí)層析成像等多種太赫茲成像方法,多篇論文被太赫茲領(lǐng)域的知名期刊收錄。到目前為止,僅張巖一人,就有160篇文章收錄在SCI索引中,論文被他人引用1800次,H因子為23。
他們將太赫茲焦平面成像技術(shù)引入太赫茲時(shí)間分辨光譜測(cè)量系統(tǒng)中,成為國(guó)內(nèi)唯一的太赫茲焦平面成像技術(shù)開(kāi)創(chuàng)者。
他們研發(fā)出的太赫茲脈沖焦平面成像系統(tǒng),可以同時(shí)獲得光場(chǎng)的振幅、相位、頻率和偏振信息,實(shí)現(xiàn)精準(zhǔn)測(cè)量,為團(tuán)隊(duì)隨后開(kāi)展的超材料和器件性能研究提供了強(qiáng)有力的保障。
他們開(kāi)發(fā)出的太赫茲泵浦成像技術(shù)系統(tǒng),在國(guó)際上獨(dú)一無(wú)二……
鎖定超材料,劍指應(yīng)用
隨著研究的不斷深入,張巖逐漸將研究重點(diǎn)轉(zhuǎn)移到太赫茲波段的超材料和超表面器件研究,更加貼近應(yīng)用。
張巖介紹:“通過(guò)調(diào)控亞波長(zhǎng)金屬結(jié)構(gòu)與太赫茲波相互作用的特異光學(xué)響應(yīng),太赫茲超材料和超表面器件已在太赫茲光束整形、導(dǎo)波和調(diào)制方面顯示了巨大的潛力和優(yōu)勢(shì),并可能推動(dòng)太赫茲光源和探測(cè)器的發(fā)展。進(jìn)一步發(fā)展和豐富太赫茲超材料和超表面器件,也將對(duì)太赫茲波在傳感、通信和雷達(dá)等應(yīng)用方面產(chǎn)生有益影響。”
所謂超材料(Metamaterial),是一種具有傳統(tǒng)材料所不具備的超常物理性質(zhì)的人工設(shè)計(jì)的特種復(fù)合材料。通過(guò)在材料關(guān)鍵物理尺度上的結(jié)構(gòu)有序設(shè)計(jì),突破某些表觀自然規(guī)律的限制,獲得超出自然界固有的普通性質(zhì)的超常材料功能,從而實(shí)現(xiàn)定制化功能的需求。
超材料與傳統(tǒng)材料的區(qū)別在于,傳統(tǒng)材料是先有材料再有應(yīng)用,而超材料是先有應(yīng)用需求,再去設(shè)計(jì)材料。超材料技術(shù)是一種材料逆向設(shè)計(jì)技術(shù),是以應(yīng)用為導(dǎo)向的技術(shù)。
2014年9月,首都師范大學(xué)超材料與器件北京市重點(diǎn)實(shí)驗(yàn)室獲得北京市科委的認(rèn)定,成為該校第6個(gè)北京市科委認(rèn)定的重點(diǎn)實(shí)驗(yàn)室/工程中心。
事實(shí)上,作為實(shí)驗(yàn)室主任,張巖在過(guò)去的三年里,已經(jīng)帶領(lǐng)團(tuán)隊(duì)承擔(dān)了國(guó)家973、國(guó)家863、國(guó)家自然科學(xué)基金委、教育部和北京市項(xiàng)目20多項(xiàng),發(fā)表SCI收錄論文近100篇,獲批國(guó)家發(fā)明專(zhuān)利13項(xiàng)、實(shí)用新型專(zhuān)利5項(xiàng),成果頗豐。
近年,張巖帶領(lǐng)課題組以實(shí)時(shí)全光太赫茲調(diào)制為目標(biāo),在太赫茲超材料、超表面以及主動(dòng)調(diào)制器件三方面開(kāi)展了對(duì)太赫茲波頻譜、偏振、振幅和相位調(diào)制的理論和實(shí)驗(yàn)研究工作,形成了以結(jié)合表面等離子體波理論和衍射光學(xué)元件設(shè)計(jì)方法為特色的階段性成果。
在頻譜調(diào)制方面,研究了閉合和劈裂共振環(huán)結(jié)構(gòu)這類(lèi)頻率選擇表面器件對(duì)太赫茲波電偶極共振和環(huán)磁共振模式在不同偏振態(tài)和結(jié)構(gòu)對(duì)稱(chēng)破缺時(shí)的調(diào)制;
在金屬超薄超表面光場(chǎng)調(diào)制方面,設(shè)計(jì)實(shí)現(xiàn)了偏振相位轉(zhuǎn)換調(diào)制天線結(jié)構(gòu),并應(yīng)用于聚焦和成像平板透鏡、全息顯示和渦旋光束產(chǎn)生等方面;
在光控太赫茲波振幅型調(diào)制器方面,研究了光泵浦半導(dǎo)體硅片中載流子遷移致電導(dǎo)率的變化和對(duì)太赫茲波透過(guò)率的調(diào)制,并應(yīng)用于菲涅耳波帶片、全息顯示和渦旋光束產(chǎn)生等方面。
相關(guān)研究成果發(fā)表在Advanced Optical Materials等期刊上,受到了審稿人和編輯的高度評(píng)價(jià),得到了SCIENCE綜述論文的引用。
同時(shí),在開(kāi)展這些實(shí)驗(yàn)研究的過(guò)程中,相繼建成和穩(wěn)定運(yùn)行了透射式、反射式太赫茲時(shí)域光譜系統(tǒng)和擁有專(zhuān)利的焦平面太赫茲成像系統(tǒng),滿足了對(duì)光譜測(cè)量、透射光場(chǎng)和表面波光場(chǎng)測(cè)量以及偏振測(cè)量的需求。
…………
他們的每一步,都在朝應(yīng)用邁進(jìn),不斷摸索并實(shí)踐著一條以應(yīng)用為導(dǎo)向,以需求為出發(fā)點(diǎn)的新路。
感恩過(guò)往,期許未來(lái)
正如這世界上沒(méi)有兩片相同的葉子,每個(gè)人的成功也都是不可復(fù)制的,各有各的妙處。豐富的求學(xué)經(jīng)歷,是張巖成長(zhǎng)道路上的獨(dú)有風(fēng)景。張巖說(shuō)每一段經(jīng)歷,都是一種成長(zhǎng),他感恩并珍惜。
張巖說(shuō)每一所大學(xué)都帶給他不同的感悟—哈爾濱工業(yè)大學(xué)“規(guī)格嚴(yán)格,功夫到家”的校訓(xùn)教導(dǎo)他為學(xué)行事需認(rèn)真細(xì)致;香港科技大學(xué)和香港理工大學(xué),讓他體會(huì)到了思想開(kāi)放與包容兼蓄;日本山形大學(xué)的研究經(jīng)歷讓他深切得感受到,精細(xì)才能造就卓越;而在德國(guó)的兩所大學(xué)訪學(xué)期間,德國(guó)學(xué)者的嚴(yán)謹(jǐn)作風(fēng)也使他深受影響……
回國(guó)后加入首都師范大學(xué)物理系,更是收獲良多。作為我國(guó)最早開(kāi)展太赫茲研究的團(tuán)隊(duì)之一,首都師范大學(xué)太赫茲實(shí)驗(yàn)室在2005年以“太赫茲科學(xué)技術(shù)的新發(fā)展”為主題的第270次“香山會(huì)議”上,被確定為全國(guó)太赫茲技術(shù)開(kāi)放研發(fā)平臺(tái)之一,迎來(lái)新的發(fā)展機(jī)遇。此后,2006年,該實(shí)驗(yàn)室被正式批準(zhǔn)為北京市“太赫茲波譜與成像”重點(diǎn)實(shí)驗(yàn)室;2007年獲批太赫茲光電子學(xué)省部共建教育部重點(diǎn)實(shí)驗(yàn)室;2008年獲批中關(guān)村開(kāi)放實(shí)驗(yàn)室;2010年通過(guò)教育部驗(yàn)收,正式成為太赫茲光電子學(xué)教育部重點(diǎn)實(shí)驗(yàn)室;2011年獲批北京市太赫茲與紅外工程技術(shù)研究中心和無(wú)損檢測(cè)新技術(shù)北京市工程實(shí)驗(yàn)室……直到今天,實(shí)驗(yàn)室已經(jīng)發(fā)展成為國(guó)內(nèi)最好的太赫茲研究基地之一,是國(guó)內(nèi)領(lǐng)先并在國(guó)際上有重要影響力的太赫茲開(kāi)放研發(fā)創(chuàng)新平臺(tái)。
張巖說(shuō),正是因?yàn)樘幵谶@樣一個(gè)優(yōu)質(zhì)平臺(tái)上,正是因?yàn)橛袌F(tuán)隊(duì)的支持、師長(zhǎng)的教誨,自己才得以盡情施展才華。
而如今,張巖也正在積極打造另一個(gè)優(yōu)質(zhì)平臺(tái)—北京市超材料與器件重點(diǎn)實(shí)驗(yàn)室。他正以領(lǐng)導(dǎo)者的身份,帶領(lǐng)團(tuán)隊(duì)成員,充分發(fā)揮學(xué)科優(yōu)勢(shì)和特點(diǎn),積極開(kāi)展超材料與器件的基本物理理論以及相應(yīng)的實(shí)驗(yàn)研究。他希望能夠?qū)?shí)驗(yàn)室建設(shè)成為超材料領(lǐng)域的優(yōu)秀科研平臺(tái)、人才培養(yǎng)基地和學(xué)術(shù)活動(dòng)中心,推動(dòng)超材料與超表面太赫茲調(diào)制器件的發(fā)展與應(yīng)用。
張巖曾在一篇名為《太赫茲超材料和超表面器件的研發(fā)與應(yīng)用》的論文中論述對(duì)太赫茲超材料和超表面器件的預(yù)期:“太赫茲技術(shù)領(lǐng)域的不斷發(fā)展催生了對(duì)各種新穎超材料和超器件的需求,同時(shí)也激發(fā)新的研究興趣。利用超表面器件對(duì)太赫茲波的振幅和相位調(diào)制能力,不僅可以調(diào)制透射光場(chǎng),亦可用于調(diào)制反射光場(chǎng)以及沿界面?zhèn)鬏數(shù)谋砻娌ü鈭?chǎng);利用超材料器件中高品質(zhì)因子形成的強(qiáng)烈的光場(chǎng)局域增強(qiáng)特性,可以開(kāi)展太赫茲波非線性光學(xué)的研究;進(jìn)一步發(fā)展太赫茲探針?biāo)泶┏上窈吞掌濓@微成像系統(tǒng),將為研究半導(dǎo)體和/或金屬超材料和超表面器件的機(jī)制與應(yīng)用提供新的手段。”簡(jiǎn)而言之,潛力無(wú)限,未來(lái)可期。
來(lái)源:科技創(chuàng)新與品牌 2015年第6期
2004年,太赫茲被美國(guó)政府評(píng)為“改變未來(lái)世界的十大技術(shù)”之四;2005年,太赫茲被日本政府列為“國(guó)家支柱十大重點(diǎn)戰(zhàn)略目標(biāo)”之首;之后,歐洲、亞洲等許多地區(qū)發(fā)達(dá)國(guó)家的政府、企業(yè)、大學(xué)和研究機(jī)構(gòu)紛紛投入到太赫茲(THz)的研發(fā)熱潮之中。就像潘多拉之盒的開(kāi)啟,太赫茲的“神奇魔力”從此被人們應(yīng)用至很多特殊領(lǐng)域。如用于安全檢查的太赫茲信件掃描儀,防爆檢查儀等;為企業(yè)提供太赫茲光譜檢測(cè)和分析服務(wù),涉及毒品,爆炸物,生物大分子,醫(yī)藥產(chǎn)品,化學(xué)試劑,窗口材料,半導(dǎo)體材料等等。“和很多新鮮事物的發(fā)展歷程一樣,太赫茲在世紀(jì)之初被追捧至‘近乎于瘋狂’的態(tài)勢(shì)并不能延續(xù)很久,之后它同樣也遭遇了曲折以及‘后發(fā)之憂’:如研發(fā)之初科學(xué)家一直找不到很好的太赫茲產(chǎn)生方法和檢測(cè)手段;到目前為止,太赫茲應(yīng)用并沒(méi)能廣泛地應(yīng)用至商用和民用領(lǐng)域,其中涉及到成本等難題急需解決。”首都師范大學(xué)(以下簡(jiǎn)稱(chēng)“首師大”)物理系教授、北京市“太赫茲波譜與成像”重點(diǎn)實(shí)驗(yàn)室核心人物張巖如...
權(quán)威出處: 《中國(guó)發(fā)明與專(zhuān)利》2014年11期
來(lái)源:《中國(guó)科技成果》2013年 第8期
中國(guó)科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開(kāi)放共享平臺(tái)(簡(jiǎn)稱(chēng):中國(guó)科技創(chuàng)新人物云平臺(tái))免責(zé)聲明:
1、中國(guó)科技創(chuàng)新人物云平臺(tái)是:“互聯(lián)網(wǎng)+科技創(chuàng)新人物”的大型云平臺(tái),平臺(tái)主要發(fā)揮互聯(lián)網(wǎng)在生產(chǎn)要素配置中的優(yōu)化和集成作用,將互聯(lián)網(wǎng)與科技創(chuàng)新人物的創(chuàng)新成果深度融合于經(jīng)濟(jì)社會(huì)各領(lǐng)域之中,提升實(shí)體經(jīng)濟(jì)的創(chuàng)新力和生產(chǎn)力,形成更廣泛的以互聯(lián)網(wǎng)為基礎(chǔ)設(shè)施和實(shí)現(xiàn)工具的經(jīng)濟(jì)發(fā)展新形態(tài),實(shí)現(xiàn)融合創(chuàng)新,為大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新提供智力支持,為產(chǎn)業(yè)智能化提供支撐,加快形成經(jīng)濟(jì)發(fā)展新動(dòng)能,促進(jìn)國(guó)民經(jīng)濟(jì)提質(zhì)增效升級(jí)。
2、中國(guó)科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開(kāi)放共享平臺(tái)內(nèi)容來(lái)源于互聯(lián)網(wǎng),信息都是采用計(jì)算機(jī)手段與相關(guān)數(shù)據(jù)庫(kù)信息自動(dòng)匹配提取數(shù)據(jù)生成,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如果發(fā)現(xiàn)信息存在錯(cuò)誤或者偏差,歡迎隨時(shí)與我們聯(lián)系,以便進(jìn)行更新完善。
3、如果您認(rèn)為本詞條還有待完善,請(qǐng)編輯詞條。
4、如果發(fā)現(xiàn)中國(guó)科技創(chuàng)新人物云平臺(tái)提供的內(nèi)容有誤或轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)及時(shí)向本站反饋,網(wǎng)站編輯部郵箱:kjcxac@126.com。
5、中國(guó)科技創(chuàng)新人物云平臺(tái)建設(shè)中盡最大努力保證數(shù)據(jù)的真實(shí)可靠,但由于一些信息難于確認(rèn)不可避免產(chǎn)生錯(cuò)誤。因此,平臺(tái)信息僅供參考,對(duì)于使用平臺(tái)信息而引起的任何爭(zhēng)議,平臺(tái)概不承擔(dān)任何責(zé)任。