謝平,男,中國科學院物理研究所研究員,博士生導師。
教育及工作經歷:
1984年,北京理工大學畢業(yè)獲學士學位。
1990年,北京理工大學畢業(yè)獲碩士學位。
1993年,中國科學院物理研究所畢業(yè)獲博士學位。
現為中國科學院物理所研究員,博士生導師。
主講課程:
資料更新中……
培養(yǎng)研究生情況:
資料更新中……
招生情況:
計劃每年招收碩博連讀生2名,博士生1名,博士后1名。
歡迎物理、化學、生物、專業(yè)的考生。
研究方向:
生物物理,側重于生物分子馬達的工作機理。
承擔科研項目情況:
理論研究各種生物馬達蛋白(例如:kinesin,myosin,dynein,Fo-F1ATPase等)和核酸酶(例如:DNAhelicase,DNApolymerase,RNApolymerase,viralreversetranscriptase,telomerase,ribosome,topoisomerase等)的運動和工作機理。
科研成果:
1. 生物體內絕大多數形式的運動,從細胞內部的物質運輸,遺傳物質(DNA)的復制,蛋白質的合成,細胞的分裂,到各種組織、器官乃至整個生物體的運動,歸根到底都是在微觀尺度上由具有馬達功能的蛋白質大分子做功推動的結果。這些具有馬達功能的蛋白質大分子,被稱為分子馬達。分子馬達可以將化學能轉化為機械能。到目前為止盡管人們對許多分子馬達的生物功能已很清楚了解,但對任何一種分子馬達的化學機械能轉化的分子機制都沒有完全理解。
2. 通過對已發(fā)表的實驗數據進行分析,對端粒酶如何延長端粒提出了一個完善的解釋,建立了端粒酶工作的微觀模型,解釋了端粒酶是如何能夠利用自身很短的RNA模板實現端粒(DNA重復序列)延長,并對端粒酶的動力學特性給出了理論上的解析描述。
3. 受美國Nova科學出版社主編邀請,謝平撰寫了一本專著。在專著中,謝平以四膜蟲端粒酶和人的端粒酶為例,詳細論述了自己所建立的端粒酶工作的分子機理的模型,利用所建模型對端粒酶工作的動力學特性進行了詳細的理論分析和計算,并與已發(fā)表實驗數據實驗作了詳細的比較,特別成功地解釋了各種似乎矛盾的實驗結果。這本專著為人們徹底了解端粒酶工作的分子機理邁出了重要的一步,將對人們如何利用端粒酶延緩人的衰老、進行衰老相關疾病和腫瘤的治療等提供非常重要的指導意義。
出版專著:
1. Ping Xie, Tetrahymena and Human Telomerase Enzymes: Model and dynamics of processive nucleotide and repeat addition translocations (New York : Nova Science, 2012).
代表性英文論文:
1. Ping Xie (2015) Dwell-time distribution, long pausing and arrest of single-ribosome translation through the mRNA duplex. Int. J. Mol. Sci. 16, 23723-23744.
2. Ping Xie (2015) Ribosome utilizes the minimum free energy changes to achieve the highest decoding rate and fidelity. Phys. Rev. E 92, 022716.
3. Ping Xie (2015) A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases. J. Theor. Biol. 380, 359–366.
4. Ping Xie (2015) Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Biochem. Biophys. Rep. 2, 87–93.
5. Ping Xie (2014) Origin of multiple intersubunit rotations before EF-G-catalyzed ribosomal translocation through the mRNA with a downstream secondary structure. BMC Biophys. 7:12.
6. Ping Xie (2014) Biphasic character of ribosomal translocation and non-Michaelis-Menten kinetics of translation. Phys. Rev. E 90: 062703
7. Ping Xie (2014) Dynamics of tRNA translocation, mRNA translocation and tRNA dissociation during ribosome translation through mRNA secondary structures. Eur. Biophys. J. 43:229–240.
8. Ping Xie (2014) Model of EF4-induced ribosomal state transitions and mRNA translocation. Phys. Biol. 11: 046007.
9. Ping Xie (2014) An explanation of biphasic characters of mRNA translocationin the ribosome. BioSystems 118, 1–7.
10. Ping Xie (2014) Dynamics of +1 ribosomal frameshifting. Mathematical Biosciences 249, 44–51.
11. Ping Xie (2013) A dynamical model of programmed -1 ribosomal frameshifting, J. Theor. Biol. 336:119–131.
12. Ping Xie (2013) Model of ribosome translation and mRNA unwinding. Eur. Biophys. J. 42:347–354.
13. Ping Xie (2013) Translocation dynamics of tRNA–mRNA in the ribosome, Biophys. Chem., 180-181, 22–28.
14. Ping Xie (2013) Dynamics of forward and backward translocation of mRNA in the ribosome, PLoS one 8:e70789.
15. Ping Xie (2013) Dynamics of tRNA occupancy and dissociation during translation by the ribosome. J. Theor. Biol. 316:49–60.
16. Ping Xie (2013) Dynamics of DNA polymerase I (Klenow fragment) under external force. J. Mol. Model. 19, 1379–1389.
17. Ping Xie (2012) A dynamic model for processive transcription elongation and backtracking long pauses by multi-subunit RNA polymerases. Proteins 80:2020–2034.
18. Duan ZW, Xie P*, Li W, Wang PY, Are coiled-coils of dimeric kinesins unwound during their walking on microtubule? PLos One 7, e36071 (2012).
19. Ping Xie (2012) Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I. J. Mol. Model. 18, 1951–1960. (2012).
20. Xie P, A nucleotide binding rectification Brownian ratchet model for translocation of Y-family DNA polymerases. Theor. Biol. Med. Mod. 8:22 (2011).
21. Xie P, A model for the dynamics of mammalian family X DNA polymerases. J. Theor. Biol. 277, 111–122 (2011).
22. Xie P, Sayers J.R., A model for transition of 5’-nuclease domain of DNA polymerase I from inert to active modes. Plos One 6, e16213 (2011).
23. Xie P, A modified model for translocation events of processive nucleotide and repeat additions by the recombinant telomerase. Biophys. Chem. 153, 83–96 (2010).
24. Xie P, Mechanism of processive movement of monomeric and dimeric kinesin molecules. Int. J. Biol. Sci. 6, 665–674 (2010) (Review Article)
25. Xie P, A model for processive movement of single-headed myosin-IX. Biophys. Chem. 151, 71–80 (2010)
26. Xie P, Dynamics of strand passage catalyzed by topoisomerase II. Eur. Biophys. J. 39, 1251–1259 (2010)
27. Xie P, Dynamics of DNA polymerases. Chapter 7 (pp. 228-262), in Bacterial DNA, DNA polymerase and DNA helicases, Edited by W.D. Knudsen and S.S. Bruns (New York : Nova Science, 2010) (invited article)
28. Xie P, Modeling DNA translocation and unwinding by helicase RecG. Chapter 9 (pp. 283-298), in Bacterial DNA, DNA polymerase and DNA helicases, Edited by W.D. Knudsen and S.S. Bruns (New York : Nova Science, 2010) (invited article)
29. Ping Xie (2010) Mechanism of processive movement of monomeric and dimeric kinesin molecules. Int. J. Biol. Sci. 6: 665–674 (Review article).
30. Xie P, A polymerase-site-jumping model for strand transfer during DNA synthesis by reverse transcriptase. Virus Research 144, 65–73 (2009)
31. Xie P, A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase. J. Theor. Biol. 259, 434–439 (2009)
32. Xie P, On chemomechanical coupling of the F1-ATPase molecular motor. Biochim. Biophys. Acta – Bioenergetics 1787, 955–962 (2009)
33. Xie P, Dynamics of backtracking long pauses of RNA polymerase. Biochim. Biophys. Acta – Gene Regulatory mechanisms 1789, 212–219 (2009)
34. Xie P, Processive hand-over-hand motion of homodimeric nanomotors induced by the interaction between two monomeric components and thermal noise. Phys. Rev. E 79, 011920 (2009)
35. Xie P, Dynamics of DNA polymerases. Chapter 7 (pp. 228-262), in Bacterial DNA, DNA polymerase and DNA helicases, Edited by W.D. Knudsen and S.S. Bruns (New York : Nova Science, 2010).
36. Xie P, A possible mechanism of processive nucleotide and repeat additions by the telomerase. BioSystems 97, 168–178 (2009)
38. XieP,Steppingbehavioroftwo-headedkinesinmotors.Biochim.Biophys.Acta1777,1195–1202(2008).
39. Xie P, Model for RuvAB-mediated branch migration of Holliday junctions. J. Theor. Biol. 249, 566–573 (2007)
40. Xie P, On translocation mechanism of ring-shaped helicase along single-stranded DNA. Biochim. Biophys. Acta – Proteins and Proteomics 1774, 737–748 (2007)
41. Xie P, Model for forward polymerization and switching transition between polymerase and exonuclease sites by DNA polymerase molecular motors. Arch. Biochem. Biophys. 457, 73–84 (2007)
42. Xie P, Dou SX, Wang PY, Processivity of single-headed kinesin motor. Biochim. Biophys. Acta – Bioenergetics 1767, 1418–1427 (2007)
43. Xie P, Dou SX, Wang PY, Limping of homodimeric kinesin motors. J. Mol. Biol. 266, 976–985 (2007)
44. Xie P, Model for helicase translocating along single-stranded DNA and unwinding double-stranded DNA. Biochim. Biophys. Acta – Proteins and Proteomics 457, 1719–1729 (2006).
45. Zhang XD, Dou SX, Xie P, Hu JS, Wang PY, Xi XG, E. coli RecQ is a rapid, efficient and monomeric helicase. J. Biol. Chem., 281, 12655–12663 (2006)
46. Xie P, Dou SX, Wang PY, Model for unidirectional movement of axonemal and cytoplasmic dynein molecules. Acta Bioch. Biophys. Sin., 38, 711–724 (2006)
47. Qian J, Xie P*, Dou SX, Wang PY, A model for biased diffusion of collagenase along collagen fibrils. J. Theor. Biol. 243, 322–327 (2006)
48. Xie P*, Dou SX, Wang PY, Mechanochemical couplings of kinesin motors. Biophys. Chem., 123, 58–76 (2006)
49. Xie P*, Dou SX, Wang PY, A hand-over-hand diffusing model for processive movement of myosin-VI. Biophys. Chem., 122, 90–100 (2006)
50. Xie P*, Dou SX, Wang PY, Model for kinetics of myosin-V molecular motors. Biophys. Chem., 120, 225–236 (2006)
51. Xie P*, Dou SX, Wang PY, Model for kinetics of wild-type and mutant kinesins. BioSystems, 84, 24–38 (2006).
52. Xie P, Zhang ZQ, Zhang XD, Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals. PHYSICAL REVIEW E 67 (2): Art. No. 026607 Part 2 FEB 2003.
53. Xie P, Zhang ZQ, Multifrequency gap solitons in nonlinear photonic crystals. PHYSICAL REVIEW LETTERS 91 (21): Art. No. 213904 NOV 21 2003.
54. Xie P, Zhang ZQ, Dynamical control of light propagation in nonlinear photonic crystals by applied electric fields. JOURNAL OF APPLIED PHYSICS 95 (4): 1630-1633 FEB 15 2004.
55. Xie P, Zhang ZQ, Excitation of gap solitons, soliton trains, and soliton sets in finite-sized two-dimensional photonic crystals. PHYSICAL REVIEW E 69 (3): Art. No. 036601 Part 2 MAR 2004.
56. Xie P, Zhang ZQ, Optical phase conjugation in third-order nonlinear photonic crystals. PHYSICAL REVIEW A 69 (5): Art. No. 053806 MAY 2004.
57. Xie P, Zhang ZQ, Large enhancement of third-harmonic generation induced by coupled gap solitons in chi((3)) nonlinear photonic crystals. PHYSICAL REVIEW E 71 (2): Art. No. 026610 Part 2 FEB 2005.
58. Yang H, Xie P, Chan SK, et al., Efficient second harmonic generation from large band gap II-VI semiconductor photonic crystal. APPLIED PHYSICS LETTERS 87 (13): Art. No. 131106 SEP 26 2005.
59. Xie P, Zhang ZQ, Nondegenerate two-beam coupling in Kerr nonlinear photonic crystals. PHYSICAL REVIEW E 72 (3): Art. No. 036607 Part 2 SEP 2005.
60. Yang H, Xie P, Chan SK, Lu WX, Zhang ZQ, Sou IK, Wong GKL, Wong KS, Simultaneous enhancement of the second and third harmonic generations in one-dimensional semiconductor photonic crystal. IEEE JOURNAL OF QUANTUM ELECTRONICS 42 (3-4): 447-452 MAR-APR 2006.
61. Lu WX, Xie P, Zhang ZQ, et al., Simultaneous perfect phase matching for second and third harmonic generations in ZnS/YF3 photonic crystal for visible emissions. OPTICS EXPRESS 14 (25): 12353-12358 DEC 11 2006.
62. Xie P, Zhang ZQ, High-efficient generation of both forward and backward optical phase conjugation in one-dimensional nonlinear photonic crystals. JOURNAL OF APPLIED PHYSICS 99 (8): Art. No. 083106 APR 15 2006.
63. Xie P, Dai JH, Wang PY, et al., Self-pumped phase conjugation in photorefractive crystals: Reflectivity and spatial fidelity. PHYSICAL REVIEW A 55 (4): 3092-3100 APR 1997.
64. Xie P, Dai JH, Wang PY, et al., Spatial fidelity of externally pumped phase conjugation in photorefractive crystals. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 14 (4): 852-859 APR 1997.
65. Xie P, Dai JH, Wang PY, et al., Temporal behavior and instabilities of the self-pumped phase conjugation in photorefractive crystals. PHYSICAL REVIEW A 56 (1): 936-943 JUL 1997.
66. Xie P, Wang PY, Dai JH, et al., Backward beam fanning in photorefractive crystals. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 15 (5): 1521-1527 MAY 1998.
67. Xie P, Wang PY, Dai JH, et al., Effect of random volume scattering on image amplification and beam fanning in photorefractive materials. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 15 (7): 1889-1894 JUL 1998.
68. Xie P, Wang PY, Dai JH, et al., Frequency shifts and dynamic instabilities in photorefractive self-pumped and mutually pumped phase conjugation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 16 (3): 420-427 MAR 1999.
69. Xie P, Wang PY, Dai JH, Electric-field-induced frequency shift and temporal instability in a self-pumped phase conjugator using BaTiO3. OPTICS COMMUNICATIONS 177 (1-6): 413-416 APR 15 2000.
70. Xie P, Wang PY, Dai JH, Stabilization of unstable steady states in photorefractive phase conjugators. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 17 (6): 1004-1007 JUN 2000.
71. Xie P, Wang PY, Dai JH, Stabilization of unstable steady states in photorefractive phase conjugators. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 17 (6): 1004-1007 JUN 2000.
72. Xie P, Wang PY, Dai JH, Origin of frequency shift and temporal instability in photorefractive self-pumped phase conjugators. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 17 (7): 1182-1187 JUL 2000.
73. Taj IA, Xie P, Mishima T, Anomalous temporal behavior of photorefractive wave mixing owing to the existence of both positive and negative charge carriers. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 17 (10): 1740-1748 OCT 2000.
74. Taj IA, Xie P, Mishima T, Fast switching of photorefractive output by applied electric field OPTICS COMMUNICATIONS 187 (1-3): 7-15 JAN 1 2001.
75. Xie P, Taj IA, Mishima T, Suppressing fluctuation of photorefractive output. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 18 (4): 492-496 APR 2001.
76. Xie P, Taj IA, Mishima T, Origin of temporal fluctuation in the photorefractive effect. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 18 (4): 479-484 APR 2001.
77. Xie P, Taj IA, Mishima T, Reducing temporal fluctuation of signal intensity in optical wave mixing. IEEE JOURNAL OF QUANTUM ELECTRONICS 37 (5): 664-671 MAY 2001.
78. Taj IA, Xie P, Mishima T, Effect of the relative phase of grating components on the temporal behavior of photorefractive four-wave mixing. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 18 (10): 1490-1496 OCT 2001.
79. Xie P, Mishima T, Temporal fluctuation in photorefractive wave mixing. IEEE JOURNAL OF QUANTUM ELECTRONICS 37 (11): 1388-1395 NOV 2001.
80. Xie P, Mishima T, Reduction of the temporal fluctuation of the signal intensity in optical wave mixing with a reflection grating. APPLIED OPTICS 41 (6): 1113-1119 FEB 20 2002.
81. Mishima T, Xie P, Koyanagi K, Taj IA, Demonstration of fast switching of photorefractive four-wave mixing via Pockels effect. OPTICS COMMUNICATIONS 225 (1-3): 211-214 SEP 15 2003.
82. Taj IA, Xie P, Koyanagi K, et al., Photorefractive four-wave mixing switches utilizing pockels effect - Longitudinal and lateral switches. OPTICAL REVIEW 11 (5): 332-336 SEP-OCT 2004.
83. Xie P, Mishima T, Fast switching of light propagation in a photorefractive crystal via Pockels effect. OPTICS COMMUNICATIONS 246 (1-3): 29-34 FEB 1 2005
端粒可以看著為“生命時鐘”。在細胞中,細胞每分裂一次,端粒就縮短一次。當端粒不能再縮短時,細胞就無法繼續(xù)分裂而衰老和死亡。相反,如果端粒的長度能得以保持不變,細胞將延緩衰老。端粒酶是能夠實現端粒延長的酶或分子馬達。在細胞中,由于端粒酶的存在,端粒的長度能夠維持不變。在癌細胞中端粒酶大量表達,因而癌細胞被認為是具有永久生命力的。然而,在我們的體細胞中,端粒酶含量極低,因而端粒不斷地縮短,導致體細胞的衰老或癌變。由于端粒和端粒酶在衰老、衰老相關疾病(如冠心病、高血壓、癡呆、肥胖等)和癌癥發(fā)生發(fā)展過程中的重要作用,將2009年諾貝爾生理學或醫(yī)學獎授予端粒和端粒酶研究的開創(chuàng)者。
盡管端粒酶的生物功能已被確定, 但其如何延長端粒的分子機理仍不清楚。鑒于此,自1985年端粒酶首次發(fā)現以來,為了解其工作機理人們對其工作的動力學特性進行了大量的實驗研究,并積累了大量的實驗數據。近幾年來,中科院物理所/北京凝聚態(tài)物理國家實驗室(籌)軟物質實驗室sm1組謝平研究員通過在大量已發(fā)表實驗數據分析的基礎上,對端粒酶如何延長端粒提出了一個完善的解釋,建立了端粒酶工作的微觀模型,解釋了端粒酶是如何能夠利用自身很短的RNA模板實現端粒(DNA重復序列)延長的,對端粒酶的動力學特性(如:端粒酶與端粒一次結合能夠延長端粒的長度等)給出了理論上解析描述,定量解釋了已發(fā)表的各種不同的實驗結果,并預言了新的動力學特性。相關論文發(fā)表后[BioSystems 97, 168–178 (2009);Biophys. Chem. 153, 83–96 (2010)]即受到重視,因此,被美國Nova科學出版社主編Nadya Gotsiridze-Columbus博士邀請撰寫了專著一本(Tetrahymena and Human Telomerase Enzymes: Model and dynamics of processive nucleotide and repeat addition translocations, Nova Science Publishers, Inc. New York, 2012)。在專著中,以四膜蟲端粒酶和人的端粒酶為例,詳細論述了謝平研究員自己所建立的端粒酶工作的分子機理的模型,利用所建模型對端粒酶工作的動力學特性進行了詳細的理論分析和計算,并與已發(fā)表實驗數據實驗作了詳細的比較,特別成功地解釋了各種似乎矛盾的實驗結果。在專著中也對以后的理論和實驗工作做了展望。
本專著為人們徹底了解端粒酶工作的分子機理邁出了重要的一步。而通過對端粒酶分子工作機理的了解,將對如何利用端粒酶延緩人的衰老、進行衰老相關疾病和腫瘤的治療等提供非常重要的指導意義。
本項研究工作得到國家自然科學基金項目的資助。
圖:四膜蟲端粒酶工作機理模型示意圖
來源:中國科學院物理研究所 2012-08-22
中國科技創(chuàng)新人物云平臺暨“互聯網+”科技創(chuàng)新人物開放共享平臺(簡稱:中國科技創(chuàng)新人物云平臺)免責聲明:
1、中國科技創(chuàng)新人物云平臺是:“互聯網+科技創(chuàng)新人物”的大型云平臺,平臺主要發(fā)揮互聯網在生產要素配置中的優(yōu)化和集成作用,將互聯網與科技創(chuàng)新人物的創(chuàng)新成果深度融合于經濟社會各領域之中,提升實體經濟的創(chuàng)新力和生產力,形成更廣泛的以互聯網為基礎設施和實現工具的經濟發(fā)展新形態(tài),實現融合創(chuàng)新,為大眾創(chuàng)業(yè),萬眾創(chuàng)新提供智力支持,為產業(yè)智能化提供支撐,加快形成經濟發(fā)展新動能,促進國民經濟提質增效升級。
2、中國科技創(chuàng)新人物云平臺暨“互聯網+”科技創(chuàng)新人物開放共享平臺內容來源于互聯網,信息都是采用計算機手段與相關數據庫信息自動匹配提取數據生成,并不意味著贊同其觀點或證實其內容的真實性,如果發(fā)現信息存在錯誤或者偏差,歡迎隨時與我們聯系,以便進行更新完善。
3、如果您認為本詞條還有待完善,請編輯詞條。
4、如果發(fā)現中國科技創(chuàng)新人物云平臺提供的內容有誤或轉載稿涉及版權等問題,請及時向本站反饋,網站編輯部郵箱:kjcxac@126.com。
5、中國科技創(chuàng)新人物云平臺建設中盡最大努力保證數據的真實可靠,但由于一些信息難于確認不可避免產生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。