欧美韩国日本一区二区,亚洲欧美精品沙发,理论片午午伦夜理片免费版,少爷们的禁脔h若柔

| 加入桌面
科技創新網
人才招聘
人才招聘
發布信息
發布信息
會員中心
會員中心

溫維佳——香港科技大學教授

點擊圖片查看原圖
 
有效期至: 長期有效
最后更新: 2015-11-27
 
還不是會員,立即免費注冊
免費注冊為會員后,您可以...
發布專家信息 推廣科研成果
建立專家網頁 在線洽談生意
還不是會員,立即免費注冊
還不是會員,立即免費注冊
 
 
    溫維佳, 重慶大學物理學院院長、香港科技大學教授、重慶大學特聘教授,軟凝聚態物理專家,主要研究領域涉及凝聚態物理,微米及納米材料的研究,先進功能結構材料,納米電(磁)流變液,微流控制,軟物質物理及光電子功能結構材料等。

Dr. Weijia Wen 溫維佳

Professor

Department of Physics

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon

Hong Kong 

Professor Wen's main research interests include soft condensed matter physics, electrorheological (ER) and magnetorheological (MR) fluids, field-induced pattern and structure transitions, micro- and nano-fluidic controlling, microsphere and nanoparticle fabrications, thin film physics, band gap materials, metamaterials and nonlinear optical materials. 

Electrorheological (ER) and Magnetorheological (MR) Fluids

ER fluids denote a class of materials consisting of nanometer to micrometer sized dielectric particles dispersed in a liquid, whose rheological properties are controllable by an external electric field. In particular, they can reversibly transform from a liquid to a solid within one hundredth of a second. While in the solid state (with the electric field applied), the strength of that solid, measured by the yield stress, is the critical parameter that governs the application potential of the ER fluids. 

Smart droplet via ER fluid (Soft Matter)

ER fluid and its application in microfluidics (Annual Review: Fluid Mech.) 

Universal Logic Gate by ER fluid (Soft Matter) 

Single-phase ER Effect (Soft Matter) 

Micro-mechanism of ER Fluid (Phys. Rev. Lett.) 

Electrorheological Fluid Dynamics (Phys. Rev. Lett.) 

Review Article for ER fluid (Soft matter) 

The Giant Electrorheological Effect (Nature Materials) 

The yield stress of nanoparticles-based ER fluid is more than 250 kPa (Appl. Phys. Lett) 

Dielectric Electrorheological Fluids: Theory and Experiment (Advances in Physics) 

Frequency Dependence of the ER Effect and the Role of Water (Phys. Rev. Lett.) 

The Ground State of the MR Fluids (Phys. Rev. Lett.) 

Field-Induced Structural Transition from BCT to FCC in EMR Fluid (Phys. Rev. Lett.) 

Microfluidic Devices; Micro- Nano-fabrications

Microfluidic devices are new generation micro-chips which will be widely used in Bio-microchip, Chemical reaction technology, lab-on-a-chip and other research areas. Our microfluidic devices are mostly associated with ER techniques developed recently in our laboratory. The merits of which are its fast response time, digitalization, easily controlling, and good reliability.

Nanofluidic Mixing (Appl. Phys. Lett) 

Single Nucleotide Polymorphism detection (Biomedical Microdevices) 

DNA detection in microfluidic chip-based assays (Microchim Acta) 

Three-dimensional thermal mapping within microfluidic chip (Scientific Reports) 

Micro-reaction with microfluidic chip (Analytical Chemistry) 

Universal logic gate from hybrid divider (Lab on Chip) 

Interchangeable Micro-PCR device (Biomedical Microdevices) 

Cell Micro-patterning (RSC Advances) 

Local Contact Angle on a Heterogeneous Surface (Langmuir) 

Logic gate with smart colloid (Lab on a Chip) 

Wax-bonding Microfluidic Chips (Lab on a Chip) 

"3D microfluidic chips" (Lab on a Chip) 

"Smart Window" (Appl. Phys. Lett.) 

Smart droplets (Soft Matters) 

Core-shell microspheres (Advanced Functional Materials) 

PDMS Conducting composite ( Advanced Materials) 

Micro thermo-indicator for microfluid (Appl. Phys. Lett.) 

Micro-heater (Appl. Phys. Lett.) 

Microfluidic pump (Appl. Phys. Lett.) 

Hybrid microfluidic mixer (Phys. Rev. Lett.) 

ER fluid-based flexible platform (Appl. Phys. Lett.) 

Microspheres and Nanoparticles

The team in UST initiated the development of techniques to fabricate multiply-coated microspheres with different desired properties. In addition to its utility in ER suspensions, such microspheres also provide a new tool for basic research in condensed matter physics.

Carbon-doped SiO2 nanoparticles for photocatalysis (Nanoscale) 

Honeycomb structural microspheres (Small) 

Hollow Titania microspheres (Chem. Comm.) 

Multi-core microspheres (Langmuir) 

Magnetically responsive microspheres (Appl. Phys. Lett.) 

Interaction between two magnetic microspheres (Appl. Phys. Lett.) 

The Significant Improvement of ER Fluids in 1997 by Using Multilayer-Coated Microspheres (Phys. Rev. Lett.) 

A Novel Class of Planar Magnetic Colloidal Crystals (Phys. Rev. Lett.) 

Functional Materials: Fractal Photonics; Metamaterials 

A specific class of planar conducting fractals possesses a series of self-similar resonances, leading to multiple gaps and pass bands for electromagnetic waves over an ultra-wide frequency range. The important feature of this material is that it exhibits not only the tunable multiple bands but also subwavelength properties in lateral dimensions, as well as simulates the functions usually exhibited by three-dimensional photonic crystals. 

Optical conductivities and signatures of topological insulators (Phys. Rev. B)

Thermal coherence properties of topological insulator (Phys. Rev. B) 

Subwavelength polarization rotators (Optics Letters) 

Resonant waveguide sensing (Biomedical Optics Express) 

Fano Effect --Terahertz extraordinary transmission (Appl. Phys. Lett.) 

Resonant terahertz transmissions (Optics Express) 

"Fractal THz Antenna" (Appl. Phys. Lett.) 

EM wave field rotation effect (Phys. Rev. Lett.) 

Resonances-induced transmission (Optics Express) 

Acoustic wave transmission through bull's eye structure (Appl. Phys. Lett.) 

3D H-fractal and its photonic bandgap properties (Phys. Rev. B) 

Surface resonant-states-enhanced acoustic wave tunneling (Phys. Rev. Lett.) 

Acoustic and EM wave Metamaterials (Phys. Rev. B) 

Surface electric field determination of hole array (Appl. Phys. Lett.) 

Fluid-solid composite (Phys. Rev. Lett.) 

Negative refractive index effect for EM wave tunneling (Appl. Phys. Lett.) 

Resonant transmission of EM wave through a metal plate (Phys. Rev. B) 

Electromagnetic wave tunneling (Phys. Rev. Lett) Movie 

Metallic planar fractal with photonic band gaps in microwave (Phys. Rev. Lett.) 

Optical Materials and Thin films 

Optical materials with large third-order nonlinear susceptibility, χ(3), are essential for light-controlled phase and refractive index modulation for future applications in optical computing, real-time holography, optical correlators and phase-conjugators. The nonlinear composite materials with χ(3) up to ~105esu.

Photoluminescence from Au nanoparticles (J. Opt. Soc. Am. B) 

Multilayer gold nanoparticle-doped thin film (J. Opt. Soc. Am. B) 

Optical nonlinearity of nanocrystalline Au/ZnO Composite Films (Optics Letters) 

Preparation and characterization of Au/SiO2 multilayer composite films with nonspherical Au particles (Appl. Phys. A )

 

 

中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺(簡稱:中國科技創新人物云平臺)免責聲明:  

1、中國科技創新人物云平臺是:“互聯網+科技創新人物”的大型云平臺,平臺主要發揮互聯網在生產要素配置中的優化和集成作用,將互聯網與科技創新人物的創新成果深度融合于經濟社會各領域之中,提升實體經濟的創新力和生產力,形成更廣泛的以互聯網為基礎設施和實現工具的經濟發展新形態,實現融合創新,為大眾創業,萬眾創新提供智力支持,為產業智能化提供支撐,加快形成經濟發展新動能,促進國民經濟提質增效升級。

2、中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺內容來源于互聯網,信息都是采用計算機手段與相關數據庫信息自動匹配提取數據生成,并不意味著贊同其觀點或證實其內容的真實性,如果發現信息存在錯誤或者偏差,歡迎隨時與我們聯系,以便進行更新完善。  

3、如果您認為本詞條還有待完善,請編輯詞條

4、如果發現中國科技創新人物云平臺提供的內容有誤或轉載稿涉及版權等問題,請及時向本站反饋,網站編輯部郵箱:kjcxac@126.com。

5、中國科技創新人物云平臺建設中盡最大努力保證數據的真實可靠,但由于一些信息難于確認不可避免產生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。

 
更多..同類創新人物
 
 
Powered by kjcx.ac.cn 9.0
購物車(0)    站內信(0)     新對話(0)
主站蜘蛛池模板: 库伦旗| 宁津县| 黄平县| 雷山县| 沙雅县| 青河县| 梁河县| 陇川县| 娄烦县| 长泰县| 乐陵市| 镇雄县| 六安市| 浠水县| 陆川县| 炎陵县| 大城县| 上饶县| 公主岭市| 新宁县| 天柱县| 德庆县| 成安县| 高唐县| 格尔木市| 岳阳市| 安龙县| 濉溪县| 远安县| 高密市| 永济市| 专栏| 鹤峰县| 铜鼓县| 乐安县| 务川| 长丰县| 阳泉市| 弥勒县| 霸州市| 科技|