專家信息:
吳超,男,西安交通大學前沿科學技術研究院材料物理中心教授,電子結構研究小組組長。
教育經歷:
2009 博士 韋恩州立大學(美國) 物理化學(導師Vladimir Y. Chernyak教授)
2004 碩士 大連理工大學 應用化學 (導師劉志廣教授)
2001 學士 大連理工大學 化學工程與工藝,英語。
工作經歷:
2016- 今 副教授 西安交大 前沿院 材料物理中心
2017-2018 美國 愛荷華州立大學 訪問學者 (導師 Mark S. Gordon教授)
2012-2016 電子結構研究小組組長 西安交大 前沿院 材料物理中心
2009-2012 博士后 美國 圣母大學(導師William F. Schneider教授)。
研究領域: 計算材料學/計算化學,即基于電子結構的多尺度模擬
研究方向:
1、分離材料(二維多孔材料和枝狀材料);
2、多相反應(利用覆蓋度效應與彈性應變工程調節);
3、計算的自動化,數據挖掘。
評閱人:
中國自然科學基金(青年、重大項目); 無機材料學報; 物理學報; ACS Applied Materials & Interfaces; ACS Applied Nano Materials; ACS Catalysis; ACS Omega; ACS Sustainable Chemistry & Engineering; AIChE Journal; Advanced Functional Materials; Applied Surface Science; Chemical Physics; ChemistrySelect; ChemSusChem; Cogent Physics; Computational and Theoretical Chemistry; Environmental Science & Technology; Fuel Processing Technology; Industrial & Engineering Chemistry Research; International Journal of Hydrogen Energy; Journal of the American Chemical Society; Journal of Materials Science & Technology; Journal of Molecular Liquids; Journal of Molecular Modeling; Journal of Physical Chemistry B; Journal of Physical Chemistry C; Langmuir; Materials Research Bulletin; Materials Science in Semiconductor Processing; Molecular Catalysis; Molecular Physics; Nano Letters; New Journal of Chemistry; Physical Chemistry Chemical Physics; RSC Advances; Small; Tetrahedron.
主講課程:Lecture Course
2023春季,本科生經典閱讀課程《〈天朝的崩潰〉導讀》16學時,主講;研究生《計算仿真科學》32學時,(王棟主講)參與6學時。
2022秋季,化生班《計算化學》32學時,主講;研究生,Electronic structure of molecules,32學時,主講。
2022春季,研究生《計算仿真科學》32學時,(王棟主講)參與6學時。
2021秋季,化生班《計算化學》32學時,主講;研究生,Electronic structure of molecules,32學時,主講。
2021春季,研究生《計算仿真科學》32學時,(王棟主講)參與6學時。
2020秋季,化生班《計算化學》32學時,主講;研究生《分子的電子結構》32學時,主講。
2019秋季,化生班《計算化學》32學時,主講;研究生《量子化學基礎》32學時,主講。
2019春季,研究生《專業英語(小班)》16學時(魯廣昊主講),參與4學時。
2018秋季,化生班《計算化學》32學時,主講。
2016秋季,材料學院研究生《計算材料學2》32學時(緱高陽主講),參與10學時;前沿院研究生《材料前沿進展》32學時(楊耀東主講),參與6學時。
2015秋季,材料學院研究生《計算材料學2》32學時(王昭主講),參與8學時;前沿院研究生《材料前沿進展》32學時(楊耀東主講),參與4學時。
2014秋季,材料學院研究生《計算材料學2》32學時(王昭主講),參與8學時;前沿院研究生《材料前沿進展》32學時(楊耀東主講),參與4學時。
2013秋季,前沿院研究生《材料前沿進展》32學時(楊耀東主講),參與2學時。
Customization(Multiple Times)
《量子化學原理》
1.《波函數的動能算符與體積元的正確表達》(pdf版)(mathematica版)
2.《動能算符相關問題》(pdf版)(mathematica版)
1、為什么薛定諤方程的動能項前面有個負號?
2、波函數的曲率、斜率越大動能越高?動能是局域性質嗎?
3、量子力學又允許電子進入經典力學的“禁止(動能為負的)區域”,如何理解?
3.《平面波的空間和時間部分中間為何有個負號?》(pdf版)(mathematica版)
《研究生專業英語》之《科技英語(小班)實踐——本質不關乎英語》 2019春季PPT
培養研究生情況:
博士生:
賈辰凌,2021/09,分子計算的自動化及其應用:取代基效應
馬木提江,2019/09,缺陷對二維硫族化合物催化NRR的影響
馮超,2019/09,分子計算的自動化及其應用:配體對催化劑的影響
海鵬起,2020/03,(2018/09-2020/02碩士,與丁向東聯合指導),主族元素的反常覆蓋率效應
博士后:
何玉成,2019/02,應變敏感的金屬、主族元素在過渡金屬中的摻雜
畢業博士研究生:
李塵晨(博士畢業,多位點酸氣捕獲材料的設計,2016/09-2021/03,去向:西安工業大學)
令狐遙遙(博士畢業,二硫化鉬表面小分子行為以及應變調控,2017/09-2020/09,去向:中北大學)
李院珍 (博士畢業,二維多孔膜的分離性能的可逆調控,2016/11-2020/09,去向:寧夏大學)
劉福柱(博士畢業,應變表面分子共吸附的研究,與楊生春聯合指導,2014/09-2020/07,2017/11-2019/11在美國佐治亞理工交流),去向:西安交通大學材料學院)
張麗英(博士畢業,多孔石墨烯作為分離材料的研究,與丁向東聯合指導,2015/07-2018/12,去向:嶺南師范學院)
薛甜甜(碩士畢業,鉑表面應變對于氧氣分解的影響,與丁向東聯合指導,2015/09-2018/06,去向:蘇州博世)
吳怡(碩士畢業,液晶材料自組裝行為,與丁向東、劉峰聯合指導,2015/09-2018/06,去向:深圳的公司)
唐華蓉(博士畢業,氣體分離材料設計,與丁向東聯合指導,2013/09-2016/06,去向:四川大學國際關系學院;科研助理 2012/05-2013/09)
劉巧(碩士畢業,表面催化,與丁向東聯合指導,2013/09- 2016/06,去向:創業;科研助理2013/05-2013/09)
郭辰(碩士畢業,液晶材料自組裝行為,與劉峰聯合指導,2013/09-2016/06,去向:上海的咨詢公司;科研助理2013/05-2013/09)
張赟(碩士畢業,氣體分離材料合成與測量,與呂東梅聯合指導,2013/09-2016/06,去向:華為)
侯秀芳(博士后,均相催化劑設計,2012/08- 2014/08,去向:延安大學化學與化工學院,講師)
霍衛光(科研實習生,物理系實驗班本科生,磁性材料,2013.5-2014.5,去向:普林斯頓大學,研究生)
王蔚熙(暑期實習生,西安交大錢學森13班,2013.7)
楊頂峰(科研助理2012.7-2013.7,去向:重慶大學,博士研究生)
任新志(科研助理2012.7-2013.2,去向:IT公司)
陳思成(暑期實習生,西安交大錢學森12班,2012.7)
Research Fields:
計算化學、計算材料學:基于電子結構(第一原理方法)的多尺度模擬。
研究方向:1、多相反應;2、氣體分離;3、計算自動化;4、交互教學軟件。
1、多相反應
(1)、應變工程(Strain Engineering)
吸附(局部事件)對應變(全局事件)的響應可能是非線性的甚至是非單調性的(吸附強度可增可減);發現拉伸應變利于CO在Pt表面的氧化。 CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C, 2015, 119 (27), 15500–15505.
吸附物可以分為:對應變敏感的和對應變不敏感的兩類。對于對應變不敏感的吸附物,來自金屬摻雜和異質結的配體效應會更明顯。Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C, 2017, 121 (40), 22139–22146.
作為催化劑的金屬可以分為:對應變敏感的和對應變不敏感的兩類。對于對應變敏感的金屬,在吸附物和應變的共同作用下,會呈現大的能量(吸附物結合能)和結構的變化(金屬原子突起),影響后續反應。Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 17927-17933; Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25. Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.
(2)、覆蓋度效應(Coverage Effect)
任一覆蓋度下催化劑表面上都會有大量的局部微反應環境(構型),極少數構型(即< 5%的表面積)決定總的反應速率;推論:重要的往往是少數派。Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94.
貴金屬的主族元素摻雜(PdCx)。穩定結構單元Pd6C的配位方式以及C-C之間各向同性的近距離排斥導致C只在Pd的奇數層均勻分布,偶數層幾乎沒有。Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C, 2021, 125, 38, 20930–20939.
反常的覆蓋度效應(O在Al表面),O-O在Al表層和層間都呈現明顯的、各向同性的吸引作用,即隨著O的覆蓋度增加O與Al的結合增強。同時,O在Al團簇吸附的優先位點為配位數多的面上的Al原子而非頂點、邊上的Al原子。A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 24004-24015.
2、氣體分離
(1)、二維多孔分離材料
材料的柔性對分離效果影響巨大。 Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.
大的剛性孔洞的透過效率可能會低于小的柔性孔洞。Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics, 2018, 20, 18192-18199.
門控材料 (Gated Materials):利用強吸附(弱共價鍵)可逆地調節多孔材料的分離性能。Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon, 2018, 134, 145-152. Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122. Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.
孔洞修飾(官能團的種類、數量、構型)對孔洞分離性質帶來巨大的不確定性。 Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.
孔洞在小的拉應變(< 3%雙軸或6%單軸)作用下呈現反直覺的分離性質:同一分子的穿透能壘升高。Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.
(2)、小分子在二維材料上的吸附、反應
1T相的二硫化鉬在表面吸附原子(基團)后會變為更穩定的1T’相。Ligand induced structure and property changes of 1T-MoS2. Physical Chemistry Chemical Physics, 2019, 21, 9391 - 9398.
1T’相的二硫化鉬對于NOx的吸附較強且受應變調節明顯。1T’-MoS2, A Promising Candidate for Sensing NOx. Journal of Physical Chemistry C, 2019, 123, 10339−10345.
一系列小分子在有缺陷的2H和1T’相的二硫化鉬上的吸附、分解。Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522. NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159. NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem, 2021, 8, 3113-3122. Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883. CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002. The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 153001.
(3)、酸性氣體的吸收與分離
確定了單個作用位點在“吸收—解吸”循環中的最佳作用強度(即反應焓變)和每循環最大有效吸收值;按照該作用強度目標尋找最佳的吸收材料。First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.
證明帶單位電荷的陰離子,無論有多少反應位點,最多能夠等摩爾地化學吸收。Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem 2013, 6 (6), 1050-1056.
證明離子液體與CO2反應可能是離子液體(被CO2)活化后的反應,機理不再是單純的酸堿作用。Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.
發展了以硼為中心的枝狀多位點SO2吸收離子液體。Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 2016, 6 (70), 66078-66086.
設計了枝狀多位點SO2吸收材料;發現了新的吸收材料與SO2的作用模式(插入模式)。Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2018, 20 (24), 16704-16711.
利用光控制吸收材料的構型,帶來吸收強度的變化。Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 2015, 16 (9), 1926-1932.
陽離子對CO2和SO2吸收的影響。The role of cations in the interactions between anionic N-heterocycles and SO2. Scientific Reports, 2018, 8 (1), 7284; Cation-assisted interactions between N-heterocycles and CO2. Physical Chemistry Chemical Physics 2015,17, 15725-15731.
3、計算自動化、數據挖掘、化學信息學
針對柔性枝狀大分子與小分子作用,發展了精度遞進的自動化構型搜索方法。Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2019, 21, 18250-18258.
利用自動化計算篩選苛刻條件下SO2吸收材料。A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry, 2021, 98, 161-167.
4、化學教育中的交互軟件開發
劉志廣*,吳超,張永策,韓梅. 三維交互網絡虛擬原子吸收實驗室的構建.《計算機與應用化學》, 2002,19(4): 492-494.
劉志廣*,岳鋅,吳超,張永策,王棟. 三種網絡虛擬實驗室的實現方法與比較.《計算機與應用化學》, 2003, 20(1): 91-93.
承擔科研項目情況:
1. 西安交通大學啟動資金 (2012.3-2017.2)。
2. 國家自然科學基金(青年)項目,用激發子散射方法研究新型低維共軛分子體系的電子激發態 (2013.1-2015.12) 21203143。
3. 國家自然科學基金(面上)項目,設計利用光調控吸著強度的CO2捕獲材料(2015.1-2018.12)21477096。
4、西安交通大學基本科研業務費 應變與電子效應對金屬催化劑活性的調控研究 2017.1-2019.12,xjj2017173. “中央高校基本科研業務費專項資金資助”(supported by“the Fundamental Research Funds for the Central Universities”)
5、國家自然科學基金(面上)枝狀多位點兩性CO2捕獲離子液體的理論與實驗研究 2022.1-2025.12, 22176152
科研成果:
1. 關于復雜有機共軛體系的電子激發態的理論突破,針對這一問題,在與博士導師光譜學家Vladimir Y. Chernyak 教授等人的合作中,吳超參與提出并發展了描述共軛有機體系中電子激發態的激發子散射方法,該方法解決了計算超大分子體系電子激發態的難題。激發子散射方法將電子激發態表述為激發子在分子內傳播以及其在節點處散射的行為,從而能夠精確描述復雜體系的激發態。激發子散射方法的定性描述最初發表于國際物理領域頂尖雜志《自然•物理》上,該雜志的新聞與評論專欄在第一時間特約理論化學物理學家Eric R. Bittner 教授對這一理論突破進行了專文評論與解讀。在數年內,這篇文章已經被廣泛引用。著名實驗光譜學家Gregory D. Scholes 在一篇綜述中這樣評價“吳等研究人員最近發表了一種通過復雜的方式連接結構單元的方法,該方法能夠預測納米尺度系統的性質。該工作的優美之處在于通過概念上簡潔的方法描述復雜體系的復雜過程”。
2. 他發展了一套基于第一原理的綜合方法,該方法能夠系統的、準確的、定量處理覆蓋率對于催化劑表面反應動力學的影響。是對于表面反應動力學研究方法的重要貢獻。吳超提出并發展了一套基于第一原理的基反應位方法能夠有效地解決上述問題。該方法綜合使用了密度泛函理論,簇展開方法,巨正則系綜蒙特卡羅方法和基于統計力學的分析方法。依據該方法,研究者可以避免在設定平均場作用時走入以前的誤區。這一方法已經在多次國際會議和校際學術交流中進行了報告,總結成的論文在本方向的權威雜志《催化學報》上發表。
代表性英文論文:共87篇SCI收錄文章。Web of Science(A-5104-2015), 被引用1790次 H指數24, + equal contributor, * correspondence author.
87. Ali, A.; Chen, L.; Nasir, M. S.; Wu, C.; Guo, B.; Yang, Y.*, Piezocatalytic removal of water bacteria and organic compounds: a review. Environmental Chemistry Letters, 2022, https://link.springer.com/article/10.1007/s10311-022-01537-3.
86. Yin, J. +; Hai, P. +; Gao, Y.; Gan, Z.; Wu, C.*; Cheng, Y.*; Xu, X.*, Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Research, https://doi.org/10.1007/s12274-022-5120-x.
85. Liu, F.; Wu, C.*; Ding, X.*; Sun, J., Atomic modification of Mo(100) surface for corrosion resistance. Applied Surface Science, 2023, 610,155509.
84. Linghu, Y.*; Tong, T.; Wu, C.*, Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.
83. Tursun, M.; Wu, C.*, Single Transition Metal Atoms Anchored on Defective MoS2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorganic Chemistry, 2022, https://doi.org/10.1021/acs.inorgchem.2c02247.
82. Gao, Y. +; Hai, P. +; Liu, L.; Yin, J.; Gan, Z.; Ai, W.; Wu, C.*; Cheng, Y.*; Xu, X.*, Balanced Crystallinity and Nanostructure for SnS2 Nanosheets through Optimized Calcination Temperature toward Enhanced Pseudocapacitive Na+ Storage. ACS Nano, 2022, 16, 9, 14745–14753.
81. Zhang, K.; He, Y.; Guo, R.; Wang, W.; Zhan, Q.; Li, R.; He, T.; Wu, C.*; Jin, M.*, Interstitial Carbon-Doped PdMo Bimetallene for High-Performance Oxygen Reduction Reaction. ACS Energy Letters, 2022, 7, 10, 3329–3336.
80. Hai, P.; Wu, C.*; Ding, X.*, NOx on Al: The Unusual Adsorption Site Preference and the Attraction among Adsorbates. Journal of Physical Chemistry C, 2022, 126, 29, 11971–11980.
79. Chen, Y.; Yan, H.; Liao, Q.*; Zhang, D.; Lin, S.; Hao, E.*; Murtaza, R.; Li, C.; Wu, C.; Duan, C.; Shi, L.*, Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie International Edition, 2022, 61, e202204516.
78. Tursun, M.; Wu, C.*, Electrocatalytic Reduction of N2 to NH3 Over Defective 1T '-WX2 (X=S, Se, Te) Monolayers. ChemSusChem, 2022, 15, 11, e202200191.
77. Tong, T.; Linghu, Y.*; Wu, G.; Wang, C.; Wu, C.*, Nitric oxide electrochemical reduction reaction on transition metal-doped MoSi2N4 monolayers. Physical Chemistry Chemical Physics, 2022, 24, 18943-18951.
76. Linghu, Y.*; Tong, T.; Li, C.; Wu, C.*, The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 590, 153001.
75. He, Y.; Hai, P.; Wu, C.*, Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.
74. Ding, X.; Luo, Q.; Zhai, Y.; Zhang, X.; Lv, Y.; Zhang, X.; Ke, C.; Wu, C.; Zheng, Y.*, Rigid Dysprosium(III) Single-Molecule Magnets Exhibit Preserved Superparamagnetism in Solution. Chinese Journal of Chemistry, 2022, 40, 563-570.
73. Li, Y.; Zhang, L.; Wu, C.*, Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.
72. He, Y.; Wu, C.*, Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C, 2021, 125, 38, 20930–20939.
71. Hai, P.; Wu, C.*, A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021,23, 24004-24015.
70. Tursun, M.; Wu, C.*, Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883.
69. Tursun, M.; Wu, C.*, NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem, 2021, 8, 3113-3122.
68. Li, C.; Lu, D.*; Wu, C.*, A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry, 2021, 98, 161-167.
67. Linghu, Y.; Lu, D.*; Wu, C.*, CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002.
66. Guo, R.; Zhang, K.; Liu, Y.; He, H.; Wu, C.*; Jin, M.*, Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.
65. Li, F.; Lin, S.; Chen, Y.; Shi, C.; Yan, H.; Li, C.; Wu, C.; Lin, L.; Duan, C.; Shi, L.*, Photocatalytic Generation of π-Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie International Edition, 2021, 60, 1561-1566.
64. Wang, B.*; Xiong, L.; Hao, H.; Cai, H.; Gao, P.; Liu, F.; Yu, X.; Wu, C.*; Yang, S.*, The “electric-dipole” effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2020, 844, 156253.
63. Linghu, Y.; Wu, C.*, NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159.
62. Li, C.; Lu D.*; Wu, C.*, Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.
61. Linghu, Y.; Wu, C.*, Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases. Journal of Materials Science, 2020, 55, 10643–10655.
60. Li, Y.; Zhang, L.; Wu, C.*, Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.
59. Li, Y.; Linghu, Y.; Wu, C.*, Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.
58. Li, Y.; Li, C.; Linghu, Y.; Wu, C.*, Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122.
57. Zhan, M.+; Ding, Z.+; Du, S.+; Chen, H.; Feng, C.; Xu, M.; Liu, Z.; Zhang, M.; Wu, C.; Lan, Y.*; Li, P.*, A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nature Communications, 2020, 11(1), 792.
56. Linghu, Y.; Wu, C.*, Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522.
55. Yang, B.; Wu, C.; Wang, J.; Bian, J.; Wang, L.; Liu, M.; Du, Y.; Yang, Y.*, When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceramics International, 2019, 46(4) 4248-4255.
54. Lu, D.*; He, Y.; Wu, C.*, Electronic structure of mono(Lewis base)-stabilized borylenes. Physical Chemistry Chemical Physics, 2019, 21, 23533-23540.
53. Li, C.; Lu, D.*; Wu, C.*, Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2019, 21, 18250-18258.
52. Moss, J. B.; Zhang, L.; Nielson, K. V.; Bi, Y.; Wu, C.*; Scheiner, S.*; Liu, T. L.*, Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Mg Batteries. Batteries & Supercaps, 2019, 2, 792-800.
51. Yang, B.; Bian, J.; Wang, L.; Wang, J.; Du, Y.; Wang, Z.; Wu, C.; Yang, Y.*, Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Physical Chemistry Chemical Physics, 2019, 21, 11697-11704.
50. Linghu, Y.; Li, N.; Du, Y.*; Wu, C.*, Ligand induced structure and property changes of 1T-MoS2. Physical Chemistry Chemical Physics, 2019, 21, 9391 - 9398.
49. Linghu, Y.; Wu, C.*, 1T’-MoS2, A Promising Candidate for Sensing NOx. Journal of Physical Chemistry C, 2019, 123, 10339−10345.
48. Liu, F.; Xue, T.; Wu, C.*; Yang, S.*, Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.
47. Xia, Z.; Zhang, S.; Liu, F.; Ma, Y.; Qu, Y.*; Wu, C.*, Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 2182-2188.
46.Xu, C.; Su, R.; Wang Z.; Wang, Y.; Zhang, D.; Wang, J.; Bian, J.; Wu, C.; Lou, X.; Yang, Y.*, Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics. Journal of Alloys and Compounds, 2019, 784, 173-181.
45. Xue, T.; Wu, C.*; Ding, X.*; Sun, J., Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 17927-17933.
44. Li, C.; Lu, D.; Wu, C.*, The role of cations in the interactions between anionic N-heterocycles and SO2. Scientific Reports, 2018, 8 (1), 7284.
43. Li, C.; Lu, D.; Wu, C.*, Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics, 2018, 20 (24), 16704-16711.
42. Zhang, L.; Wu, C.*; Ding, X.*; Fang, Y.; Sun, J., Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics, 2018, 20, 18192-18199.
41. Li, Y.; Wu, C.*, Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon, 2018, 134, 145-152.
40. He, Y.; Que, W.*; Liu, X.; Wu, C.*, Trapping Behaviors of Photogenerated Electrons on the (110), (101), and (221) Facets of SnO2: Experimental and DFT Investigations. ACS Applied Materials and Interfaces, 2017, 9 (44), 38984-38991.
39. Liu, F.; Wu, C.*; Yang, S.*, Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C, 2017, 121 (40), 22139–22146.
38. Zhang, L.; Wu, C.*; Fang, Y.; Ding, X.*; Sun, J., Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.
37. Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D.*, Electrophilicity and Nucleophilicity of Boryl Radicals. Journal of Organic Chemistry 2017, 82 (6), 2898-2905.
36. Zhang, S.; Xia, Z.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y.*, Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. Journal of Material Chemistry A, 2017, 5, 3260-3266.
35. Zhang, S.; Li, J.; Xia, Z.; Wu, C.; Zhang, Z.; Ma, Y.*; Qu, Y.*, Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of catalysts. Nanoscale 2017, 9, 3140-3149.
34. Shi, L.; Yang, J. H.; Zeng, H. B.; Chen, Y. M.*; Yang, S. C.; Wu, C.; Zeng, H.; Yoshihito, O.; Zhang, Q.*, Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374-14378.
33. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules. Chemical Physics 2016, 481, 124-132. [Vladimir Y. Chernyak Festschrift, Tribute to Vladimir Chernyak by Shaul Mukamel]
32. Zhang, Y.; Lu, D.*; Zhang, J.-J.; Wu, C.*, Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 2016, 6 (70), 66078-66086.
31. Yang, S.; Liu, F.; Wu, C.*; Yang, S.*, Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small 2016, 12 (30), 4028-4047.
30. Wu, C.; Wang, H.; Zhang, J.; Gou, G.*; Pan, B.; Li, J.*, Lithium–Boron (Li–B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS Applied Materials and Interfaces 2016, 8 (4), 2526–2532.
29. Hou, X.*; Wu, C.; Li, Y.; Yang, X., The C-N coupling reaction of bimetallic cations [MAu(CH)]+(M = Pt, Ir, Os) with NH3. Computational and Theoretical Chemistry 2015, 1027, 52-57.
28. Fang, Y.; Tai, Y. Y.; Deng, J.; Wu, C.; Ding, X.*; Sun, J.; Salje, E. K. H.*, Fe-vacancy ordering in superconducting K1-xFe2-ySe2: first-principles calculations and Monte Carlo simulations. Superconductor Science and Technology 2015, 28, 095004.
27. Liu, F.; Wu, C.*; Yang, G.; Yang, S.*, CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C 2015, 119 (27), 15500–15505.
26. Tang, H.; Lu, D.*; Wu, C.*, Cation-assisted interactions between N-heterocycles and CO2. Physical Chemistry Chemical Physics 2015,17, 15725-15731.
25. Tang, H.; Lu, D.*; Wu, C.*, Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 2015, 16 (9), 1926-1932.
24. Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.*; Wu, C.*; Yang, D.; Yin, Y.*, Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 2015, 9 (3), 3307-13.
23. Chen, Z.; Li, P.*; Wu, C.*, - A uniformly porous 2D CN (1 : 1) network predicted by first-principles calculations. RSC Advances 2015, 5 (16), 11791-11796.
22. Xu, X.; Yang, X.; Wu, Y.; Zhou, G.*; Wu, C.*; Wong, W.-Y.*, tris-Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry – An Asian Journal 2015, 10 (1), 252-262.
21. Chen, Y.-C.+; Qin, L.+; Meng, Z.-S.; Yang, D.-F.; Wu, C.*; Fu, Z.; Zheng, Y.-Z.*; Liu, J.-L.; Tarasenko, R.; Orendá, M.*; Prokleka, J.; Sechovsky, V.; Tong, M.-L.*, Study on a Magnetic-Cooling Material Gd(OH)CO3. Journal of Material Chemistry A, 2014, 2, 9851-9858.
20. Wei, Y.+; Tang, H.+; Cong, X.; Rao, B.; Wu, C.*; Zeng, X.*, Pd(II)-Catalyzed Intermolecular Arylation of Unactivated C(sp3)–H Bonds with Aryl Bromides Enabled by 8-Aminoquinoline Auxiliary. Organic Letters 2014, 16 (8), 2248-2251.
19. Lu, D.*; Wu, C.; Li, P.*, 3-Center-5-Electron Boryl Radicals with σ0π1 Ground State Electronic Structure. Organic Letters 2014, 16 (5), 1486–1489.
18. Pang, Y. C.+; Hou, X.+; Qin, L.; Wu, C.*; Xue, W.; Zheng, Y. Z.*; Zheng, Z.; Chen, X. M., Observation of allylic rearrangement in water-rich reaction. Chemical Communications 2014, 50, 2910-2912. [烯丙基重排機理,水團簇的輔助作用]
17. Li, R.+; Tang, H.+; Fu, H.; Ren, H.; Wang, X.; Wu, C*; Wu, C.*; Shi, F.*, Arynes Double Bond Insertion/Nucleophilic Addition with Vinylogous Amides and Carbodiimides. Journal of Organic Chemistry 2014, 79, 1344-1355.
16. Lu, D.*; Wu, C.; Li, P.*, Synergistic effects of lewis bases and substituents on the electronic structure and reactivity of boryl radicals. Chemistry – A European Journal 2014, 20 (6), 1630-1637.
15. Vogt, M.; Wu, C.; Oliver, A. G.; Meyer, C. J.; Schneider, W. F.*; Ashfeld, B. L.*, Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2. Chemical Communications 2013, 49, 11527-11529.
14. Cong, X.+; Tang, H.+; Wu, C.*; Zeng, X.*, Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics 2013, 32 (21), 6565-6575.
13. Vogt, M.; Bennett, J. E.; Huang, Y.; Wu, C.; Schneider, W. F.*; Brennecke, J. F.*; Ashfeld, B. L.*, Solid-State Covalent Capture of CO2 by Using N-Heterocyclic Carbenes. Chemistry – A European Journal 2013, 19 (34), 11134-11138.
12. Tang, H.; Wu, C.*, Reactivity of Azole Anions with CO2 from the DFT Perspective. ChemSusChem 2013, 6 (6), 1050-1056. [唑類含氮雜環的離子液體最多1:1化學計量的與CO2化學成鍵,對比了與SO2的作用]
11. McEwen, J. S.; Bray, J. M.; Wu, C.; Schneider, W. F.*, How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Physical Chemistry Chemical Physics 2012, 14 (48), 16677-16685.
10. Wu, C.; Senftle, T. P.; Schneider, W. F.*, First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.
9. Wu, C.; Schmidt, D. J.; Wolverton, C.; Schneider, W. F.*, Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94. [本研究的結論也可以用于解釋嚴重兩極分化等社會現象,參見: 1% 與99%]
8. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton Scattering on Symmetric Branching Centers in Conjugated Molecules. Journal of Physical Chemistry B 2011, 115 (18), 5465-5475.
7. Li, H.; Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach. Journal of Physical Chemistry Letters 2010, 1 (23), 3396-3400.
6. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. III. Applications. Journal of Chemical Physics 2008, 129 (17), 174113.
5. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations. Journal of Chemical Physics 2008, 129 (17), 174112.
4. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism. Journal of Chemical Physics 2008, 129 (17), 174111. [文章4(理論),5(實現),6(應用)構成一個系列,特別是從躍遷能量的角度,系統地討論激發子散射的理論及其實現方法。該系列的第四篇(本人未參與)討論了躍遷強度及偶極等的定量實現。]
3. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach. Physical Review Letters 2008, 100 (5), 057405. [討論如何定量地實現激發子散射方法]
2. Wu, C.; Tretiak, S.*; Chernyak, V. Y.*, Excited states and optical response of a donor-acceptor substituted polyene: A TD-DFT study. Chemical Physics Letters 2007, 433 (4-6), 305-311. [本文的亮點:討論了B3LYP方法在處理共軛體系的局限性]
1. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering and localization in branched dendrimeric structures.Nature Physics 2006, 2 (9), 631-635. [Chernyak首次提出激發子散射概念,定性地描述該概念。核心的創新:將粒子在一維勢阱模型與散射理論聯系起來,簡潔地解釋復雜枝狀共軛體系的激發態電子結構。當然這個想法并不局限于處理電子激發態,也可以應用到其他適合的體系。相關但并不準確的解讀:Exciton dynamics: Simplifying organic complexity. 綜述參見33號文章]
榮譽獎勵:
1、西安交通大學青年拔尖B類。
西安交通大學吳超教授應邀到蘭州化物所進行學術交流
6月19日,應固體潤滑國家重點實驗室邀請,西安交通大學前沿科學技術研究院吳超教授來到中國科學院蘭州化學物理研究所進行學術交流,并作了題為Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111)的學術報告。
報告中,以表面覆蓋率對氧解離的影響為例,吳超教授介紹了基于第一性原理的表面覆蓋率效應對表面催化反應動力學影響方面的工作,包括該項工作的背景、思路、具體實施以及對催化反應研究的一些指導意義。
吳超教授于2001、2004年分別獲得大連理工大學學士、碩士學位,2009年獲得美國韋恩州立大學博士學位,2009年2月至2012年3月在美國圣母大學(導師William F. Schneider教授)做博士后。2012年3月至今,任西安交通大學前沿科學技術研究院電子結構研究小組主任。吳超教授的主要研究領域為基于第一原理的多尺度模擬,表面催化反應熱力學與動力學,設計環境友好的氣體分離材料,電子激發態的理論發展與應用,自組裝的單層體系,化學信息學,多媒體交互式軟件在化學教育中的應用。相關研究工作發表于Nature Physics、Physical Review Letters等。
來源:中國科學院蘭州物理化學研究所 2012-06-19
吳超:為材料物理“加速”
隨著國民經濟的飛速發展,我國材料科學迎來了全新的發展機遇。以科學技術推動材料事業的發展,為經濟發展服務,成為科技工作者的歷史使命。在人才林立的西安交通大學的實驗室里,他正用智慧和汗水將夢想凝結成形。樸實的話語,蘊含的卻是他十余年來為祖國材料物理化學科學事業“加速”的夢想。他就是西安交通大學前沿科學技術研究院材料物理中心獨立項目負責人吳超。
吳超的求學之路是一條向上的曲線,2001和2004年,他在大連理工大學分別獲得學士和碩士學位,科研的道路越走越遠,學術研究越來越深,求知的心指引他走出了國門。2009年,吳超獲美國韋恩州立大學化學博士學位。2009年至2012年,在美國圣母大學做博士后研究。
儲備多年,吳超為回國做好了充分的準備,扎實的專業基礎與過人的膽識,成就了碩果累累的研究成績,“三大突破”讓國內外同行為之側目。
關于復雜有機共軛體系的電子激發態的理論突破,針對這一問題,在與博士導師光譜學家Vladimir Y. Chernyak 教授等人的合作中,吳超參與提出并發展了描述共軛有機體系中電子激發態的激發子散射方法,該方法解決了計算超大分子體系電子激發態的難題。
共軛有機體系是潛在的良好的光電材料。理解它們的光電性質是設計、改良這些材料的前提。已有的基于量子力學理論的方法,由于計算量過大,不能夠處理復雜體系。激發子散射方法將電子激發態表述為激發子在分子內傳播以及其在節點處散射的行為,從而能夠精確描述復雜體系的激發態。激發子散射方法的定性描述最初發表于國際物理領域頂尖雜志《自然•物理》上,該雜志的新聞與評論專欄在第一時間特約理論化學物理學家Eric R. Bittner 教授對這一理論突破進行了專文評論與解讀。在數年內,這篇文章已經被廣泛引用。著名實驗光譜學家Gregory D. Scholes 在一篇綜述中這樣評價“吳等研究人員最近發表了一種通過復雜的方式連接結構單元的方法,該方法能夠預測納米尺度系統的性質。該工作的優美之處在于通過概念上簡潔的方法描述復雜體系的復雜過程”。
第二個突破是,他發展了一套基于第一原理的綜合方法,該方法能夠系統的、準確的、定量處理覆蓋率對于催化劑表面反應動力學的影響。是對于表面反應動力學研究方法的重要貢獻。
覆蓋率對于表面反應的影響歷來是一個研究熱點,因為覆蓋率影響反應的各個階段的勢能面,所以它的復雜性一直困擾多相催化領域。吳超提出并發展了一套基于第一原理的基反應位方法能夠有效地解決上述問題。該方法綜合使用了密度泛函理論,簇展開方法,巨正則系綜蒙特卡羅方法和基于統計力學的分析方法。依據該方法,研究者可以避免在設定平均場作用時走入以前的誤區。這一方法已經在多次國際會議和校際學術交流中進行了報告,總結成的論文在本方向的權威雜志《催化學報》上發表。吳超在西安交通大學的主要研究方向之一就是計劃將這種方法拓展并應用于設計新型雙金屬催化劑系統。
除此之外,吳超還探索用理論方法指導可持續的化學化工研究,即用密度泛函理論設計基于含氮/磷雜環化合物的可循環使用的溫室氣體吸收材料,并指導相應的實驗研究。
圍繞該方面的項目是環境友好化學的跨學科合作研究。吳超研究組在對于含氮/磷雜環離子液體與二氧化碳、二氧化硫反應機理的深入理解基礎上,采用定量構效關系方法,對于可能的化學修飾進行了系統的研究,提出了可能的高效吸附劑候選分子。實驗組正在合成并且測試實際吸附效果與穩定性。同時采用化工工程的吸附模型與動力學方法對于吸收過程進行了模擬,理論上給出最優的可能結果,從而給實驗以有力的指導。
在創新技術上,吳超有著更遠大的夢想,“讓中國的材料物理化學科學在世界范圍內占有一席之地,將來走向產業化,在標準制定中為中國爭取最大的話語權。”談及此處,吳超眼神里滿是憧憬。
來源:科學中國人 2014年第2期
中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺(簡稱:中國科技創新人物云平臺)免責聲明:
1、中國科技創新人物云平臺是:“互聯網+科技創新人物”的大型云平臺,平臺主要發揮互聯網在生產要素配置中的優化和集成作用,將互聯網與科技創新人物的創新成果深度融合于經濟社會各領域之中,提升實體經濟的創新力和生產力,形成更廣泛的以互聯網為基礎設施和實現工具的經濟發展新形態,實現融合創新,為大眾創業,萬眾創新提供智力支持,為產業智能化提供支撐,加快形成經濟發展新動能,促進國民經濟提質增效升級。
2、中國科技創新人物云平臺暨“互聯網+”科技創新人物開放共享平臺內容來源于互聯網,信息都是采用計算機手段與相關數據庫信息自動匹配提取數據生成,并不意味著贊同其觀點或證實其內容的真實性,如果發現信息存在錯誤或者偏差,歡迎隨時與我們聯系,以便進行更新完善。
3、如果您認為本詞條還有待完善,請編輯詞條。
4、如果發現中國科技創新人物云平臺提供的內容有誤或轉載稿涉及版權等問題,請及時向本站反饋,網站編輯部郵箱:kjcxac@126.com。
5、中國科技創新人物云平臺建設中盡最大努力保證數據的真實可靠,但由于一些信息難于確認不可避免產生錯誤。因此,平臺信息僅供參考,對于使用平臺信息而引起的任何爭議,平臺概不承擔任何責任。