|
您好,歡迎回來(lái)
|
專家信息:
曹勇,1973年出生,江蘇泗陽(yáng)人,畢業(yè)于復(fù)旦大學(xué)化學(xué)系。現(xiàn)任復(fù)旦大學(xué)化學(xué)系教授,博士生導(dǎo)師。主要從事表面化學(xué)和多相催化研究,涉及納米金屬催化、固體酸堿催化、低碳烷烴的定向活化及選擇氧化、生物質(zhì)催化轉(zhuǎn)化及其高附加值利用等領(lǐng)域。2014年獲得第五屆“中國(guó)催化青年獎(jiǎng)”。
教育及工作經(jīng)歷:
1990年9月至1995年7月 復(fù)旦大學(xué)化學(xué)系,獲理學(xué)學(xué)士學(xué)位。
1998年3月至2000年1月 新加坡國(guó)立大學(xué)理學(xué)院化學(xué)系,研究生聯(lián)合培養(yǎng)。
1994年9月至2000年7月 復(fù)旦大學(xué)化學(xué)系,獲理學(xué)博士學(xué)位。
2000年8月至2001年11月 復(fù)旦大學(xué)化學(xué)系工作,講師。
2001年12月至2005年5月 復(fù)旦大學(xué)化學(xué)系工作,副教授/碩士生導(dǎo)師。
2005年6月至今 復(fù)旦大學(xué)化學(xué)系工作,教授/博士生導(dǎo)師。
學(xué)術(shù)兼職及社會(huì)任職:
1、2009年5月 至今 被聘為 Applied Catalysis A: General 編委。
2、2014年9月 至今 被聘為 《催化學(xué)報(bào)》編委。
3、參與J. Am. Chem. Soc.、J. Catal.和《高等學(xué)校化學(xué)學(xué)報(bào)》、《化學(xué)學(xué)報(bào)》、《物理化學(xué)學(xué)報(bào)》、《石油化工》等刊物的審稿。
主講課程:
1、《現(xiàn)代化學(xué)專題-表面化學(xué)》
2、《物理化學(xué)(II)》
3、《催化反應(yīng)機(jī)理》(研)
4、《高等結(jié)構(gòu)分析》(工程碩士)
培養(yǎng)研究生情況:
指導(dǎo)研究生多名,其中3名已獲碩士學(xué)位。
研究方向:
主要從事表面化學(xué)和多相催化研究,涉及高性能新結(jié)構(gòu)納米介孔催化材料的創(chuàng)制與綠色催化應(yīng)用、低碳烷烴選擇氧化制烯烴、1,3-丙二醇等聚酯原料關(guān)鍵單體的催化加氫合成、金屬/半導(dǎo)體光催化、催化過(guò)程的原位動(dòng)態(tài)譜學(xué)表征及C1資源的綜合利用等。
承擔(dān)科研項(xiàng)目情況:
主持在研或完成國(guó)家科技部863項(xiàng)目、國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目、國(guó)家自然科學(xué)基金創(chuàng)新群體資助項(xiàng)目、上海市"青年科技啟明星計(jì)劃跟蹤"等十余項(xiàng)科研項(xiàng)目。
1.核-殼式納米復(fù)合催化劑的設(shè)計(jì)合成及其分子識(shí)別催化性。
2.新型金屬/有機(jī)雜化催化劑的設(shè)計(jì)及直接法制H2O2研究。
3.甲醇氧化羰化制碳酸二甲酯新型納米復(fù)合催化劑研究。
科研成果:
1 在新型納米催化材料的研制及應(yīng)用、催化原位譜學(xué)表征和催化理論的研究方面取得了一定的成果在Acc. Chem. Res.,Angew. Chem. Int. Ed., J. Am. Chem. Soc., Chem. Europ. J.,ChemSusChem,Chem. Commun., Green Chem., J. Catal., Adv. Synth. Catal., Langmuir等學(xué)術(shù)期刊發(fā)表SCI論文180余篇,他引3000余次。
2.申請(qǐng)中國(guó)發(fā)明專利32件(授權(quán)專利18件)。
2001年至今發(fā)表在Acc. Chem. Res.,Angew. Chem. Int. Ed., J. Am. Chem. Soc., Chem. Europ. J.,ChemSusChem,Chem. Commun., Green Chem., J. Catal., Adv. Synth. Catal., Langmuir等學(xué)術(shù)期刊發(fā)表SCI論文180余篇,其中影響因子大于 3.0 論文 50 余篇,SCI他引3000 余次,10篇論文被他引40次以上,其中單篇最高他引過(guò)百次。
近5年發(fā)表論文:
2015
1. Gold-Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile, L. Yu, Q. Zhang, S. S. Li, J. Huang, Y. M. Liu, H. Y. He, Y. Cao*,ChemSusChem 2015, 8, 3029-3035. [PDF] [SI]
2. Formic Acid: A Versatile Renewable Reagent for Green ans Sustainable Chemical Syhthesis, X. Liu, S. S. Li, Y. M. Liu, Y. Cao*, Chin. J. Catal. 2015, 36, 1461-1475. [PDF]
3. Deoxygenative Coupling of Nitroarenes to Synthesize Aromatic Azo Compounds with CO Using Supported Gold Catalysts, H. Q. Li, X. Liu, Q. Zhang, S. S. Li, Y. M. Liu, Y. Cao*,Chem. Commun. 2015, 51, 11217-11220. [PDF] [SI]
4. Heterogeneous Gold-Catalyzed Selective Reductive Transformation of Quinolines with Formic Acid, L. Tao, Q. Zhang, S. S. Li, X. Liu, Y. M. Liu, Y. Cao*, Adv. Synth. Catal.2015, 357, 753-760. [PDF] [SI]
2014
1. An Aqueous Rechargeable Formate-based Hydrogen Battery Driven by Heterogeneous Pd Catalysis, Q. Y. Bi, J. D. Lin, Y. M. Liu, X. L. Du, H. Y. He, Y. Cao*, Angew. Chem. Int. Ed. 2014, 53, 13583-13587. [PDF] [SI]
2. Gold-catalyzed Direct Hydrogenative Coupling of Nitroarenes to Synthesize Aromatic Azo Compounds, X. Liu, H. Q. Li, S. Ye, Y. M. Liu, H. Y. He, Y. Cao*, Angew. Chem. Int. Ed.2014, 53,7624-7628. [PDF] [SI]
3. Gold Supported on Titania for Specific Monohydrogenation of Dinitroaromatics in the Liquid Phase, S. S. Liu, X. Liu, L.Yu, Y. M. Liu*, H. Y. He, Y. Cao*, Green Chem. 2014,16, 4162-4169. [PDF] [SI]
4. Partially Reduced Iridium Oxide Clusters Dispersed on Titania as Efficient Catalyst for Facile Synthesis of Dimethylformamide from CO2, H2 and Dimethylamine, Q. Y. Bi, J. D. Lin, Y. M. Liu, S. H. Xie, H. Y. He, Y. Cao*, Chem. Commun. 2014, 50, 9138-9140. [PDF] [SI]
5. Efficient and Exceptionally Selective Semireduction of Alkynes using a Supported Gold Catalyst under a CO Atmosphere, S. S. Li, X. Liu, Y. M. Liu*, H. Y. He, K. N. Fan, Y. Cao*,Chem. Commun. 2014, 50, 5626-5628. [PDF] [SI]
6. Propylene from Renewable Resources: Catalytic Conversion of Glycerol into Propylene, L. Yu, J. Yuan, Q. Zhang, Y. M. Liu, H. Y. He, K. N. Fan, Y. Cao*, ChemSusChem 2014, 7, 743-747. [PDF] [SI]
7. Supported Gold Catalysis: From Small Molecule Activation to Green Chemical Synthesis, X. Liu, L. He, Y. M. Liu, Y. Cao*, Acc. Chem. Res. 2014, 47, 793-804. [PDF]
2013
1. Efficient Catalytic Hydrogenolysis of Glycerol using Formic Acid as Hydrogen Source, J. Yuan, S. S. Li, L. Yu, Y. M. Liu, Y. Cao*, Chinese J. Catal. 2013, 34, 2066–2074. [PDF]
2. Catalytic Conversion of Biomass-derived Levulinic Acid into γ-valerolactone using Iridium Nanoparticles Supported on Carbon Nanotubes, X. L. Du, Y. M. Liu, J. Q. Wang, Y. Cao*, K. N. Fan, Chinese J. Catal. 2013, 34, 993–1001. [PDF]
3. Mild, Selective and Switchable Transfer Reduction of Nitroarenes Catalyzed by Supported Gold Nanoparticles, X. Liu, S. Ye, H. Q. Li, Y. M. Liu, Y. Cao*, K. N. Fan, Catal. Sci. Technol. 2013, 3, 3200-3206. [PDF] [SI]
4. C-C Cross-Coupling of Primary and Secondary Benzylic Alcohols using Supported Gold-Based Bimetallic Catalysts, X. Liu, R. S. Ding, L. He, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, ChemSusChem 2013, 6, 604-608. [PDF] [SI]
5. Sucrose-templated Mesoporous β-Ga2O3 as a Novel Efficient Catalyst for Dehydrogenation of Propane in the Presence of CO2, J. L. Wu, M. Chen, Y. M. Liu*, Y. Cao*, H. Y. He, K. N. Fan, Catal. Commun. 2013, 30, 61-65. [PDF]
6. A Versatile Aqueous Reduction of Bio-based Carboxylic Acids using Syngas as a Hydrogen Source, L. Yu, X. L. Du, J. Yuan, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan,ChemSusChem 2013, 6, 42-46. [PDF] [SI]
7. Copper-based Catalysts for the Efficient Conversion of Carbohydrate Biomass into γ-valerolactone in the Absence of Externally Added Hydrogen, J. Yuan, S. S. Li, L. Yu, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Energy Environ. Sci. 2013, 6, 3308-3313. [PDF] [SI]
2012
1. Tunable Copper-catalyzed Chemoselective Hydrogenolysis of Biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran, X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao* H. Y. He, K. N. Fan, Green Chem. 2012, 14, 935-939. [PDF] [SI]
2. Graphite Oxide as an Efficient and Durable Metal-free Catalyst for Aerobic Oxidative Coupling of Amines to Imines, H. Huang, J. Huang, Y. M. Liu*, H. Y. He, Y. Cao*, K. N. Fan, Green Chem. 2012, 14, 930-934. [PDF] [SI]
3. Highly Efficient Heterogeneous Gold-catalyzed Direct Synthesis of Tertiary and Secondary Amines from Alcohols and Urea, L. He, Y. Qian, R. S. Ding, Y. M. Liu, H. Y. He, K. N. Fan, Y. Cao*, ChemSusChem 2012, 5, 621-624. [PDF]
4. A General and Efficient Heterogeneous Gold-Catalyzed Hydration of Nitriles in Neat Water under Mild Atmospheric Conditions, Y. M. Liu, L. He, M. M. Wang, Y. Cao*, H. Y. He, K. N. Fan, ChemSusChem 2012, 5, 1392-1396. [PDF] [SI]
5. Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions, Q. Y. Bi, X. L. Du, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, J. Am. Chem. Soc. 2012, 134, 8926-8933. [PDF] [SI]
6. An Unusual Chemoselective Hydrogenation of Quinoline Compounds using Supported Gold Catalysts, D. Ren, L. He, L. Yu, R. S. Ding, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan,J. Am. Chem. Soc. 2012, 134, 17592-17598. [PDF] [SI]
2011
1. The Catalytic Use of Supported Gold Nanoparticles for Styrene Synthesis via Oxidative Dehydrogenation of Ethylbenzene, J. Xu, J. Huang, Y. M. Liu, Y. Cao*, Y. X. Li, K. N. Fan,Catal. Lett. 2011, 141, 198-206. [PDF]
2. Single-crystal-like Titania Mesocages, Z. F. Bian, J. Zhu, J. Wen, F. L. Cao, Y. N. Huo, X. F. Qian, Y. Cao, M. Q. Shen, H. X. Li, Y. F. Lu, Angew. Chem. Int. Ed. 2011, 50, 1105-1108. [PDF] [SI]
3. Dehydrogenation of Propane in the Presence of N2O over In2O3-Al2O3 Mixed Oxide Catalysts, M. Chen, J. L. Wu, Y. M. Liu, Y. Cao*, K. N. Fan, Catal. Commun. 2011, 12, 1063-1066. [PDF]
4. Mild and Efficient CO-mediated Eliminative Deoxygenation of Epoxides Catalyzed by Supported Gold Nanoparticles, J. Ni, L. He, Y. Cao*, H. Y. He, K. N. Fan, Chem. Commun. 2011, 47, 812-814. [PDF] [SI]
5. Gold Nanoparticles Supported on Hydroxylapatite as High Performance Catalysts for Low Temperature CO Oxidation, J. Huang, L. C. Wang, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Appl. Catal. B: Environ. 2011, 101, 560-569. [PDF]
6. Highly Chemo- and Regioselective Transfer Reduction of Aromatic Nitro Compounds using Ammonium Formate Catalyzed by Supported Gold Nanoparticles, X. B. Lou, L. He, Y. Qian, Y. M. Liu, Y. Cao*, K. N. Fan, Adv. Synth. Catal. 2011, 353, 281-286.[PDF] [SI]
7. Direct One-pot Reductive N-alkylation of Nitroarenes using Alcohols with Supported Gold Catalysts, C. H. Tang, L. He, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Chem. Eur. J. 2011,17, 7172-7177. [PDF] [SI]
8. Hydrogen-independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives using Supported Gold Catalysts, X. L. Du, L. He, S. Zhao, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Angew. Chem. Int. Ed. 2011, 50, 7815-7819. [PDF] [SI]
9. Direct One-pot Reductive Imination of Nitroarenes using Aldehydes and Carbon Monoxide by Titania Supported Gold Nanoparticles at Room Temperature, J. Huang, Lei Yu, L. He, Y. M. Liu, Y. Cao*, K. N. Fan, Green Chem. 2011, 13, 2672-2677. [PDF] [SI]
10. Titania Supported Iridium Subnanoclusters as an Efficient Heterogeneous Catalyst for Direct Synthesis of Quinolines from Nitroarenes and Aliphatic Alcohols, L. He, J. Q. Wang, Y. Gong, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Angew. Chem. Int. Ed. 2011, 50, 10216-10220. [PDF] [SI]
11. Conversion of Biomass-derived Levulinate and Formate Esters into γ-valerolactone over Supported Gold Catalysts, X. L. Du, Q. Y. Bi, Y. M. Liu, Y. Cao*, K. N. Fan,ChemSusChem 2011, 4, 1838-1843. [PDF] [SI]
12. Gold Supported on Mesostructured Ceria as an Efficient Catalyst for the Chemoselective Hydrogenation of Carbonyl Compounds in Neat Water, M. M. Wang, L. He, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Green Chem. 2011, 13, 602-607. [PDF]
2011年以后發(fā)表論文:
2010
1. Supported Indium Oxide as Novel Efficient Catalysts for Dehydrogenation of Propane with Carbon Dioxide, M. Chen, J. Xu, Y. M. Liu, Y. Cao*, H. Y. He, J. H. Zhuang*, Appl. Catal. A: Gen. 2010, 377, 35-41. [PDF]
2. A Novel Gold-catalyzed Chemoselective Reduction of α,β-unsaturated Aldehydes using CO and H2O as the Hydrogen Source, L. He, F. J. Yu, X. B. Lou, Y. Cao*, H. Y. He, K. N. Fan, Chem. Commun. 2010, 46, 1553-1555. [PDF] [SI]
3. Dehydrogenation of Propane over In2O3–Al2O3 Mixed Oxide in the Presence of Carbon Dioxide, M. Chen, J. Xu, Y. M. Liu, Y. Cao*, H. Y. He, J. H. Zhuang*, J. Catal. 2010, 272, 101-108. [PDF]
4. Synthesis of Novel Cage-like Mesoporous Vanadosilicate and Its Efficient Performance for Oxidation Dehydrogenation of Propane, Y. M. Liu*, S. H. Xie, Y. Cao*, H. Y. He, K. N. Fan, J. Phys. Chem. C 2010, 114, 5941-5946. [PDF]
5. Efficient and Clean Gold-catalyzed One-pot Selective N-Alkylation of Amines with Alcohols, L. He, X. B. Lou, J. Ni, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Chem. Eur. J.2010, 16, 13965-13969. [PDF] [SI]
6. Facile Synthesis of Highly Stable and Well-dispersed Mesoporous ZrO2 Carbon Composites with High Performance in Oxidative Dehydrogenation of Ethylbenzene, Q. Li, J. Xu, Z. X. Wu, Dan Feng, J. P. Yang, J. Wei, Q. L. Wu, B. Tu, Y. Cao, D. Y. Zhao, Phys. Chem. Chem. Phys. 2010, 12, 10996–11003. [PDF]
2009
1. Gold Nanoparticles Supported on Manganese Qxides for Low Temperature CO Oxidation, L. C. Wang, Q. Liu, X. S. Huang, Y. M. Liu, Y. Cao*, K. N. Fan, Appl. Catal. B: Environ.2009, 88, 204-212. [PDF]
2. Dry Citrate-precursor Synthesized Nanocrystalline Cobalt Oxide as Highly Active Catalyst for Total Oxidation of Propane, Q. Liu, L. C. Wang, M. Chen, Y. Cao*, H. Y. He, K. N. Fan,J. Catal. 2009, 263, 104-113. [PDF]
3. Morphology Effects of Nanoscale Ceria on the Activity of Au/CeO2 Catalysts for Low-temperature CO Oxidation, X. S. Huang, H. Sun, L. C. Wang, Y. M. Liu*, K. N. Fan, Y. Cao*, Appl. Catal. B: Environ. 2009, 90, 224-232. [PDF]
4. A Green and Efficient Oxidation of Alcohols by Supported Gold Catalysts using Aqueous H2O2 under Organic Solvent-free Conditions, J. Ni, W. J. Yu, L. He, H. Sun, Y. Cao*, H. Y. He, K. N. Fan, Green Chem. 2009, 11, 756-759. [PDF][SI]
5. Effect of Pretreatment Atmosphere on CO Oxidation over α-Mn2O3 Supported Gold Catalysts, L. C. Wang, L. He, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, J. H. Zhuang*, J. Catal. 2009, 264, 145-153. [PDF]
6. Gold Supported on Hydroxyapatite as Versatile Multifunctional Catalyst for the Direct Tandem Synthesis of Imines and Oximes, H. Sun, F. Z. Su, J. Ni, Y. Cao*, H. Y. He, K. N. Fan, Angew. Chem. Int. Ed. 2009, 48, 4390-4393. [PDF] [SI]
7. Photooxygenation of Hydrocarbons over Efficient and Reusable Decatungstate Heterogenized on Hydrophobically Modified Mesoporous Silica, L. L. Ni, J. Ni, Y. Lv, P. Yang*, Y. Cao*, Chem. Commun. 2009, 2171-2173. [PDF] [SI]
8. 精細(xì)化學(xué)品綠色合成中的納米Au催化:機(jī)遇與挑戰(zhàn), 何林, 倪吉, 孫浩, 曹勇, 催化學(xué)報(bào),2009, 30, 958-964. [PDF]
9. Highly Selective Ce-Ni-O Catalysts for Efficient Low Temperature Oxidative Dehydrogenation of Propane, Y. M. Liu, L. C. Wang, M. Chen, J. Xu, Y. Cao*, H. Y. He, K. N. Fan, Catal. Lett. 2009, 130, 350-354. [PDF]
10. The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming, G. S. Wu, D. S. Mao, G. Z. Lu, Y. Cao*, K. N. Fan, Catal. Lett. 2009, 130, 177-184. [PDF]
11. Aqueous Room Temperature Gold-catalyzed Chemoselective Transfer Hydrogenation of Aldehydes, L. He, J. Ni, L. C. Wang, F. J. Yu, Y. Cao*, H. Y. He, K. N. Fan, Chem. Eur. J.2009, 15, 11833-11836. [PDF] [SI]
12. Efficient Room Temperature Gold-catalyzed Selective Reduction of Nitro Compounds using CO and H2O as the Hydrogen Source, L. He, L. C. Wang, H. Sun, J. Ni,Y. Cao*, H. Y. He, K. N. Fan, Angew. Chem. Int. Ed. 2009, 48, 9538-9541. [PDF] [SI]
13. Mesostructured CeO2as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene, J. Xu, L. C. Wang, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Catal. Lett. 2009,133, 307-313. [PDF]
14. Vanadia Supported on H2O2 -detemplated Mesoporous SBA-15 as New Effective Catalysts for the Oxidative Dehydrogenation of Propane, J. Xu, M. Chen, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan*, Micro. Meso. Mat. 2009, 118, 354-360. [PDF]
2008
1. Ga-Al Mixed-Oxide-Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation, F. Z. Su, Y. M. Liu, L. C. Wang, Y. Cao*, H. Y. He, K. N. Fan, Angew. Chem. Int. Ed. 2008, 47, 334-337. [PDF] [SI]
2. Aerobic Oxidation of Alcohols Catalyzed by Gold Nanoparticles Supported on Gallia Polymorphs, F. Z. Su, M. Chen, L. C. Wang, X. S. Huang, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Catal. Commun. 2008, 9, 1027-1032. [PDF]
3. Waste-free Soft Reactive Grinding Synthesis of High-surface-area Copper-manganese Spinel Oxide Catalysts Highly Effective for Methanol Steam Reforming, Q. Liu, L. C. Wang, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, Catal. Lett. 2008, 121, 144-150. [PDF]
4. Simple Fabrication of Thermally Stable Apertured N-doped TiO2 Microtubes as a Highly Efficient Photocatalyst under Visible Light Irradiation, J. H. Xu, W. L. Dai, J. X. Li, Y. Cao, H. X. Li, H. Y. He, K. N. Fan, Catal. Commun. 2008, 9, 146-152. [PDF]
5. Simple Fabrication of Twist-like Helix N,S-codoped Titania Photocatalyst with Visible-light Response, J. H. Xu, J. X. Li, W. L. Dai, Y. Cao, H. X. Li, K. N. Fan, Appl. Catal. B: Environ. 2008, 79, 72-80. [PDF]
6. Novel Core-shell Structured Mesoporous Titania Microspheres: Preparation, Characterization and Excellent Photocatalytic Activity in Phenol Abatement, J. H. Xia, W. L. Dai, J. X. Li, Y. Cao, H. X. Li, K. N. Fan, J. Photochem. Photobiol. A, Chem. 2008, 195, 284–294 [PDF]
7. MnO2 Nanorod Supported Gold Nanoparticles with Enhanced Activity for Solvent-free Aerobic Alcohol Oxidation, L. C. Wang, Y. M. Liu, M. Chen, Y. Cao*, H. Y. He, K. N. Fan,J. Phys. Chem. C 2008, 112, 6981-6987. [PDF]
8. Solvent-free Selective Oxidation of Alcohols by Molecular Oxygen over β-MnO2 Nanorods Supported Gold Nanoparticles, L. C. Wang, L. He, Q. Liu, Y. M. Liu, M. Chen, Y. Cao*, H. Y. He, K. N. Fan, Appl. Catal. A: Gen. 2008, 344, 150-157. [PDF]
9. Dehydrogenation of Propane over Spinel-type Gallia-alumina Solid Solution Catalysts, M. Chen, F. Z. Su, J. Xu, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, J. Catal. 2008, 256, 293-300. [PDF]
10. Enhanced Activity of Spinel-type Ga2O3–Al2O3 Mixed Oxide for the Dehydrogenation of Propane in the Presence of CO2 , M. Chen, J. Xu, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan,Catal. Lett. 2008, 124, 369-375. [PDF]
11. Aluminum Containing MCF Silica as Highly Efficient Solid Acid Catalyst for Alcohol Esterification, Y. M. Liu, J. Xu, L. C. Wang, Y. Cao*, H. Y. He, K. N. Fan, Catal. Lett. 2008,125, 62-68. [PDF]
12. Efficient and Chemoselective Reduction of Carbonyl Compounds with Supported Gold Catalysts under Transfer Hydrogenation Conditions, F. Z. Su, L. He, J. Ni, Y. Cao*, H. Y. He, K. N. Fan, Chem. Commun. 2008, 3531-3533. [PDF] [SI]
13. Gold Supported on Nanocrystalline β-Ga2O3 as Versatile Bifunctional Catalyst for Facile Oxidative Transformation of Alcohols, Aldehydes and Acetals into Esters, F. Z. Su, J. Ni, H. Sun, Y. Cao*, H. Y. He, K. N. Fan, Chem. Eur. J. 2008, 14, 7131-7135. [PDF] [SI]
14. Gold Nanoparticles Deposited on Manganese (III) Oxide as Novel Efficient Catalyst for Low Temperature CO Oxidation, L. C. Wang, X. S. Huang, Q. Liu, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, J. H. Zhuang*, J. Catal. 2008, 259, 66-74. [PDF]
15. Facile Synthesis of Fe-loaded Mesoporous Silica by a Combined Detemplation-incorporation Process through Fenton’s Chemistry, Y. M. Liu, J. Xu, L. He, Y. Cao*, H. Y. He, D. Y. Zhao, J. H. Zhuang*, K. N. Fan, J. Phys. Chem. C2008, 112, 16575-16583. [PDF]
2007
1. An Integrated Low Temperature Approach to Highly Photoactive Nanocrystalline Mesostructured Titania, J. Zhu, Z. F. Bian, J. Ren, Y. Cao*, Y. M. Liu, W. L. Dai, H. Y. He, K. N. Fan, Catal. Commun. 2007, 8, 971-976. [PDF]
2. Production of Hydrogen by Steam Reforming of Methanol over Cu/ZnO Catalysts Prepared via a Practical Soft Reactive Grinding Route Based on Dry Oxalate-precursor Synthesis, L. C. Wang, Y. M. Liu, M. Chen, Y. Cao*, H. Y. He, G. S. Wu, W. L. Dai, K. N. Fan, J. Catal. 2007, 246, 193-204. [PDF]
3. 高性能納米金催化劑的研究進(jìn)展, 王路存, 蘇方正, 黃新松, 曹勇, 石油化工, 2007, 9, 867-873.
4. 選擇氧化中新型Keggin結(jié)構(gòu)硅鎢酸鹽催化劑的研究進(jìn)展, 李靜霞, 戴維林, 曹勇, 范康年, 石油化工, 2007, 4, 412-417.
5. Microwave Accelerated Solvent-free Aerobic Oxidation of Benzyl Alcohol over Efficient and Reusable Manganese Oxides, Y. Su, L. C. Wang, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan,Catal. Commun. 2007, 8, 2181-2185. [PDF]
6. Nanocrystalline Anatase TiO2 Photocatalysts Prepared via a Facile Low Temperature Nonhydrolytic Sol-gel Reaction of TiCl4 and Benzyl Alcohol, J. Zhu, J. Yang, Z. F. Bian, J. Ren, Y. M. Liu, Y. Cao*, H. X. Li, H. Y. He, K. N. Fan*, Appl. Catal. B: Environ. 2007, 76, 82-91. [PDF]
7. New Green Catalytic Manufacture of Glutaric Acid from the Oxidation of Cyclopentane-1,2-diol with Aqueous Hydrogen Peroxide, H. Chen, W. L. Dai, R. H. Gao, Y. Cao*, H. X. Li, K. N. Fan, Appl. Catal. A: Gen. 2007,328, 226-236. [PDF]
8. A Green Pocess For O-heterocyclization of Cycloocta-1,5-diene by Peroxotungstic Species with Aqueous H2O2, R. H. Gao, W. L. Dai, Y. Y. Le, X. L. Yang, Y. Cao, H. X. Li, K. N. Fan, Green Chem. 2007, 9, 878-881. [PDF]
9. Structural Evolution and Catalytic Properties of Nanostructured Cu/ZrO2 Catalysts Prepared by Oxalate Gel-coprecipitation Technique, L. C. Wang, Q. Liu, M. Chen, Y. M. Liu, Y. Cao*, H. Y. He, K. N. Fan, J. Phys. Chem. C2007, 111, 16549-16557. [PDF]
10. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis, L. C. Wang, Y. M. Liu, Y. Cao*, G. S. Wu, C. Z. Yao, W. L. Dai, H. Y. He, K. N. Fan,J. Catal.2007, 246, 193-204. [PDF]
2006
1. Chromium Supported on Mesocellular Silica Foam (MCF) for Oxidative Dehydrogenation of Propane, Y. M. Liu, W. L. Feng, L. C. Wang, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan,Catal. Lett. 2006, 106, 145-152. [PDF]
2. Highly Effective Hydrogen Production from Steam Reforming of Methanol over SBA-15-Promoted Cu/ZnO/Al2O3 Catalysts, C. Z. Yao, X. R. Zhang, L. C. Wang, Y. Cao, W. L. Dai, K. N. Fan, D. Wu, Y. H. Sun, Acta Chimica Sinica2006, 64, 269-272. [PDF]
3. Structure and Catalytic Properties of Vanadium Oxide Supported on Mesocellulous Silica Foams (MCF) for the Oxidative Dehydrogenation of Propane to Propylene, Y. M. Liu, W. L. Feng, T. C. Li, H. Y. He, W. L. Dai, Y. Cao*, K. N. Fan, J. Catal. 2006, 239, 125-136. [PDF]
4. A Low Temperature Benzyl Alcohol Alcoholysis Approach to Highly Photoactive Nanocrystalline Anatase TiO2, J. Zhu, J. Yang, L. Chen, Y. Cao, W. L. Dai, K. N. Fan, Chinese J. Catal. 2006, 27, 171-177.
5. Transformation of Various Oxygen Species on the Surface of Electrolytic Silver Characterized by in Situ Raman Spectroscopy, L. P. Ren, W. L. Dai, X. L. Yang, Y. Cao, Z. K. Xie, K. N. Fan, Chinese J. Catal. 2006, 27, 115-118. [PDF]
6. Highly Photoactive Nanocrystalline TiO2 Aerogel Synthesized by a Facile Epoxide-mediated Non-alkoxide Sol-gel Method, L. Chen, J. Zhu, J. Yang, Y. M. Liu, Y. Cao, Y. M. Liu, H. Y. He, W. L. Dai, K. N. Fan, Chinese J. Catal. 2006, 27, 291-293.
7. On the Role of Reverse Hydrogen and Water Spillover for Methanol Decomposition over Cu/ZrO2 Catalyst, G. S. Wu, L. C. Wang, Y. M. Liu, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan,Acta Chimica Sinica2006, 64, 1017-1021.
8. Implication of the Role of Oxygen Anions and Oxygen Vacancies for Methanol Decomposition over Zirconia Supported Copper Catalysts, G. S. Wu, L. C. Wang, Y. M. Liu, Y. Cao*, W. L. Dai, H. Y. He, K. N. Fan*, Appl. Surf. Sci. 2006, 253, 974-982. [PDF]
9. Photocatalytic Activity of Epoxide Sol-gel Derived Titania Transformed into Nanocrystalline Aerogel Materials by Supercritical Drying, L. Chen, J. Zhu, Y. M. Liu,Y. Cao*, H. X. Li, W. L. Dai, H. Y. He, K. N. Fan, J. Mol. Catal. A, Chem. 2006, 255, 260-268. [PDF]
10. Studies on the Structural Change of a Reaction-controlled Phase-transfer [p-C5H5NC16H33]3 {PO4[WO3]4} Catalyst during the Selective Oxidation of Cyclopentene to Glutaric Acid with Aqueous H2O2, H. Chen, W. L. Dai, X. L. Yang, R. H. Gao, Y. Cao, H. X. Li, K. N. Fan, Appl. Catal. A: Gen. 2006, 309, 62-69. [PDF]
11. Tungsten Containing MCF Silica as Active and Recyclable Catalysts for Liquid-phase Oxidation of 1,3-butanediol to 4-hydroxy-2-butanone, Y. Su, Y. M. Liu, L. C. Wang, M. Chen, Y. Cao*, W. L. Dai, H. Y. He, K. N. Fan*, Appl. Catal. A: Gen. 2006, 315, 91-100. [PDF]
12. Effect of Preparation Method on the Hydrogen Production from Methanol Steam Reforming over Binary Cu/ZrO2 Catalysts, C. Z. Yao, L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao*, W. L. Dai, H. Y. He, K. N. Fan*, Appl. Catal. A: Gen. 2006, 297, 151-158. [PDF]
13. 環(huán)戊烯選擇氧化合成戊二酸綠色催化過(guò)程, 陳慧, 戴維林, 高瑞華, 楊新麗, 曹勇, 范康年, 石油化工, 2006, 35, 118-121.
2005
1. Synthesis, Characterization and Catalytic Application of Mesoporous W-MCM-48 for the Selective Oxidation of Cyclopentene to Glutaraldehyde, X. L. Yang , W. L. Dai, R. H. Gao, H. Chen, H. X. Li, Y. Cao, K. N. Fan, J. Mol. Catal. A-Chem. 2005, 241, 205-214. [PDF]
2. Novel Tungsten-containing Mesoporous HMS Material: Its Synthesis, Characterization and Catalytic Application in the Selective Oxidation of Cyclopentene to Glutaraldehyde by Aqueous H2O2, X. L. Yang, W. L. Dai, J. H. Xu, Y. Cao, H. X. Li, K. N. Fan, Appl. Catal. A: Gen. 2005, 283, 1-8. [PDF]
3. Highly Efficient Ni-Ce-O Mixed Oxide Catalysts via Gel-coprecipitation of Oxalate Precursors for Catalytic Combustion of Methane, N. Yi, Y. Cao, Y. M. Liu, W. L. Dai, H. Y. He, K. N. Fan, Chem. Lett. 2005, 34, 108-109.
4. Microwave-irradiation Promoted Cu/ZnO/Al2O3 Catalyst for Hydrogen Production from Steam Reforming of Methanol, X. R. Zhang, C. Z. Yao, L. C. Wang, Y. Cao, D. Wu, Y. H. Sun, W. L. Dai, K. N. Fan, Chem. J. Chin. Univ.-Chin. 2005, 26, 1137-1139.
5. Gas-phase Photo-oxidations of Organic Compounds over Different forms of Zirconia, C. Y. Wu, X. P. Zhao, Y. J. Ren, Y. H. Yue, W. M. Hua, Y. Cao, Y. Tang, Z. Gao, J. Mol. Catal. A, Chem. 2005, 229, 233–239. [PDF]
6. Carbon Exchange between Methane and Carbon Dioxide over Rh/H-BEA, L. P. Qian, Y. Cao, B. Yue, Yu Ren, B. L. Chen, H. Y. He, Chinese J. Catal. 2005, 26, 455-457. [PDF]
7. A Highly Efficient Cu/ZnO/Al2O3 Catalyst via Gel-coprecipitation of Oxalate Precursors for Low-temperature Steam Reforming of Methanol, X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao*, W. L. Dai, H. Y. He, K. N. Fan, Catal. Lett. 2005, 102, 183-190. [PDF]
8. Synthesis of Novel Core-shell Structured WO3/TiO2 Spheroids and Its Application in the Catalytic Oxidation of Cyclopentene to Glutaraldehyde by Aqueous H2O2, X. L. Yang, W. L. Dai, C. W. Guo, Chen H, Y. Cao, H. X. Li, H. Y. He, K. N. Fan, J. Catal. 2005, 234, 438-450. [PDF]
9. Nanocrystalline LaCoO3 Perovskites Confined in SBA-15 Silica as New Efficient Catalysts for Hydrocarbon Oxidation, N. Yi, Y. Cao*, Y. Su, W. L. Dai, H. Y. He, K. N. Fan*, J. Catal.2005, 230, 249-253. [PDF]
10. A Unique Microwave Effect on the Microstructural Modification of Cu/ZnO/Al2O3Catalysts for Steam Reforming of Methanol, X. R. Zhang, L. C. Wang, Y. Cao*, W. L. Dai, H. Y. He, K. N. Fan*, Chem. Commun. 2005, 32, 4104-4106. [PDF] [SI]
11. Direct Dehydrogenation of Methanol to Formaldehyde over Pre-treated Polycrystalline Silver Catalyst, L. P. Ren, W. L. Dai, X. L. Yang, J. H. Xu, Y. Cao, H. X. Li, K. N. Fan,Catal. Lett. 2005, 99, 83-87. [PDF]
12. 新型鈾基催化劑的研究進(jìn)展, 高瑞華, 戴維林, 楊新麗, 曹勇, 范康年, 石油化工, 2005, 34, 791-796.
13. 新型WO3/HMS催化劑的合成及其在環(huán)戊烯選擇氧化反應(yīng)中的性能研究, 楊新麗, 戴維林, 徐建華, 陳浩, 曹勇, 范康年, 催化學(xué)報(bào), 2005, 26, 311-316.
2004
1. A Density Functional Theory Study on the Adsorption of Chlorobenzene on the Si(111)-7 × 7 Surface, Z. H. Li, Y. C. Li, W. N. Wang, Y. Cao, K. N. Fan, J. Phys. Chem. B 2004, 108, 14049-14055. [PDF]
2. Novel Highly Active Ag-SiO2-Al2O3-ZnO Catalyst for the Production of Anhydrous HCHO from Direct Dehydrogenation of CH3OH, L. P. Ren, W. L. Dai, X. L. Yang, Y. Cao, K. N. Fan, Appl. Catal. A: Gen. 2004, 273, 83-88. [PDF]
3. Novel Efficient and Green Approach to the Synthesis of Glutaraldehyde over Highly Active W-doped SBA-15 Catalyst, X. L. Yang, W. L. Dai, H. Chen, Y. Cao, H. X. Li, H. Y. He, K. N. Fan, J. Catal. 2004, 229, 259-263.[PDF]
4. Synthesis and Characterization of Thermally Stable Mesostructured Sulfated Zirconia by a Novel Sulfate-assisted Alcohothermal Route, N. Yi, Y. Cao*, W. L. Feng, W. L. Dai, K. N. Fan, Catal. Lett. 2004, 99, 73-78. [PDF]
5. Catalytic Oxidation of Methane over Novel Ce-Ni-O Mixed Oxide Catalysts Prepared by Oxalate Gel-coprecipitation, N. Yi, Y. Cao*, W. L. Feng, W. L. Dai, K. N. Fan, Catal. Lett.2004, 99, 207-213. [PDF]
6. Highly Effective Hydrogen Production from Steam Reforming of Methanol over Cu/ZnO/Al2O3 Catalysts Promoted by Nanostructured Carbon Materials, X. R. Zhang, L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, K. N. Fan, Chem. J. Chin. Univ.-Chin. 2004, 25, 2125-2127.
7. Effect of Promoter on the Structure and Performance of Activated Carbon-supported Wacker-type Catalyst for DMC Synthesis, P. Yang, Y. Cao, X. H. Bao, W. L. Dai, K. N. Fan, Chinese J. Catal. 2004, 25, 995-999.
8. A Remarkable Effect of Alkali Addition in the Oxidative Carbonylation of Methanol to Dimethyl Carbonate Catalyzed by a Polymer-complexed Cu(II) Catalyst System, W. L. Feng, Y. Cao*, N. Yi, W. L. Dai, K. N. Fan*, Chem. Lett. 2004, 33, 958-959. [PDF]
9. Direct Production of Hydrogen Peroxide from CO, O2, and H2O Over a Novel Alumina Supported Cu Catalyst, W. L. Feng, Y. Cao*, N. Yi, W. L. Dai, K. N. Fan*, New J. Chem.2004, 28, 14311-14333. [PDF]
10. Ni-Ce-O Mixed Oxide via Gel-coprecipitation of Oxalate Precursors for Catalytic Combustion of Methane, N. Yi, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, Chinese J. Catal.2004, 26 (1), 7-9.
11. Ag-SiO2-Al2O3 Composite as Highly Active Catalyst for the Formation of Formaldehyde from Partial Oxidation of Methanol, W. L. Dai, Y. Cao, L. L. Ren, X. L. Yang, J. H. Xu, H. Y. He, K. N. Fan, J. Catal. 2004, 228, 80-91. [PDF]
12. Vanadium Oxide Supported on Mesoporous SBA-15 as Highly Selective Catalysts in the Oxidative Dehydrogenation of Propane, Y. M. Liu, Y. Cao*, N. Yi, W. L. Feng, W. L. Dai, S. R. Yan, H. Y. He, K. N. Fan*, J. Catal. 2004, 224, 417-428. [PDF]
13. Impact of Preparation Strategy on the Properties of Carbon-supported Wacker-type Catalysts in Vapor-phase Dimethyl Carbonate Synthesis, Y. Cao*, P. Yang, C. Z. Yao, N. Yi, W. L. Feng, W. L. Dai, K. N. Fan*, Appl. Catal. A: Gen. 2004, 272, 15-22. [PDF]
14. A Novel Non-phosgene Process for the Synthesis of Methyl N-phenyl Carbamate from Methanol and Phenylurea, Effect of Solvent and Catalyst, X. K. Wang, S. R. Yan, Y. Cao, K. N. Fan, H. Y. He, M. Q. Kang, S. Y. Peng, Chinese J. Chem. 2004, 22, 782-786.
15. 納米氧化鈰催化苯甲酸甲酯催化氫化合成苯乙酮, 王少成, 陳庚, 曹勇, 沈偉, 胡建國(guó),徐華龍, 復(fù)旦學(xué)報(bào), 2004, 43, 615-620. [PDF]
16. 新型介孔釩氧化物催化劑上丙烷高選擇性氧化脫氫制丙烯研究, 伊楠, 劉永梅, 馮偉樑,曹勇, 戴維林, 范康年, 吳東, 孫予罕, 復(fù)旦學(xué)報(bào), 2004, 43, 597-602. [PDF]
17. 新型MCM-41固載化鈮酸催化氧化環(huán)戊烯制備戊二醛, 徐建華, 戴維林, 楊新麗, 曹勇,范康年, 化學(xué)學(xué)報(bào), 2004, 62, 1467-1471. [PDF]
2003
1. Multiple Configurations of N-methylpyrrole Binding on Si(111)-7×7, F. Tao, Z. L. Yuan, X. F. Chen, M. H. Qiao, Z. H. Wang, Y. J. Dai, H. G. Huang, Y. Cao, G. Q. Xu, Phys. Rev. B2003, 67, 245406. [PDF]
2. Novel Highly Active Ag-SiO2-MgO Catalysts used for Direct Dehydrogenation of Methanol to Anhydrous Formaldehyde, L. P. Ren, W. L. Dai, Y. Cao, K. N. Fan, Catal. Lett. 2003,85, 81-85.
3. Dissociative Adsorption of Pyrrole on Si(111)-(7×7), Z. L. Yuan, X. F. Chen, Z. H. Wang, Y. Cao, K. S. Yong, Q. P. Liu, G. Q. Xu, J. Chem. Phys. 2003, 119, 10389-10395.
4. Preparation of High Performance Cu/ZnO/Al2O3 Catalyst for Methanol Synthesis from CO2Hydrogenation by Coprecipitation-reduction, Y. Cao, L. F. Chen,W. L. Dai, K. N. Fan, D. Wu,Y. H. Sun, Chem. J. Chin. Univ.-Chin. 2003, 24, 1296-1298.
5. Novel Economic and Green Approach to the Synthesis of Highly Active W-MCM41 in Oxidative Cleavage of CPE, W. L. Dai, H. Chen, H. X. Li, Y. Cao, K. N. Fan, Chem. Commun. 2003, 892-893. [PDF]
6. Amperometric Biosensor Based on a Nanoporous ZrO2 Matrix, B. H. Liu, Y. Cao, Ddadan Chen, J. L. Kong, J. Q. Deng, Anal. Chim. Acta. 2003, 478, 59-66. [PDF]
7. First Observation of Highly Efficient Dehydrogenation of Methanol to Anhydrous Formaldehyde over Novel Ag-SiO2-MgO-Al2O3 Catalyst, L. P. Ren, W. L. Dai, Y. Cao, H. X. Li, K. N. Fan, Chem. Commun. 2003, 3030-3031. [PDF]
8. Fabrication of Mesoporous Core-shell Structured Titania Microspheres with Hollow Interiors, C. W. Guo, Y. Cao*, S. H. Xie, W. L. Dai, K. N. Fan, Chem. Commun. 2003,700-701. [PDF]
9. Adsorption and Thermal Dissociation of Pyrrole on Si(100)-2×1, M. H. Qiao, F. Tao,Y. Cao, G. Q. Xu, Surf. Sci. 2003, 544, 285-294. [PDF]
10. 45. Mesoporous Bimetallic PdCl2-CuCl2 Catalysts for Dimethyl Carbonate Synthesis by Vapor Phase Oxidative Carbonylation of Methanol, P. Yang, Y. Cao, J. C. Hu, W. L. Dai, K. N. Fan, Appl. Catal. A: Gen. 2003, 241, 363-373. [PDF]
11. Effect of Chemical Treatment of Activated Carbon as a Support for Promoted Dimethyl Carbonate Synthesis by Vapor Phase Oxidative Carbonylation of Methanol over Wacker-type Catalysts, P. Yang, Y. Cao, W. L. Dai, J. F. Deng, K. N. Fan, Appl. Catal. A: Gen.2003, 243, 323-331. [PDF]
12. Highly Effective Oxidative Dehydrogenation of Propane over Vanadia Supported on Mesoporous SBA-15 Silica, Y. M. Liu, Y. Cao, W. L. Dai, K. N. Fan, Catal. Lett. 2003, 88, 61-67. [PDF]
13. CuCl Catalyst Heterogenized on Diamide Immobilized SBA-15 for Efficient Oxidative Carbonylation of Methanol to Dimethylcarbonate, Y. Cao*, J. C. Hu, P. Yang, W. L. Dai, K. N. Fan*, Chem. Commun. 2003, 908-909. [PDF] [SI]
14. The Non-isothermal Decomposition Kinetics of Copper(II) Complexes with Phthalanilic Acids and Amino Acids, L. P. Ren, W. L. Dai, H. X. Li, Y. Cao, X. H. Zhang, K. N. Fan, Int. J. Chem. Kinet. 2003, 35, 623-628.
15. 表征固體超強(qiáng)酸性的新方法——正丁烷異構(gòu)化反應(yīng)的原位13C MAS NMR譜, 馬卓娜, 胡軍成, 范康年, 曹勇, 賀鶴勇, 高滋, 化學(xué)學(xué)報(bào), 2003, 61, 1352-1356. [PDF]
16. 納米Ni-Co-B非晶態(tài)合金抗氧化行為的原位XPS研究, 戴維林, 曹勇, 范康年, 鄧景發(fā), 高等學(xué)校化學(xué)學(xué)報(bào), 2003, 3, 473-476. [PDF]
17. 規(guī)則中孔TiO2微球的均相沉淀合成及其在環(huán)戊烯氧化反應(yīng)中的應(yīng)用, 郭昌文, 戴維林,曹勇, 范康年, 高等學(xué)校化學(xué)學(xué)報(bào), 2003, 24, 1097-1099. [PDF]
18. 氧在銀/二氧化硅催化劑上的超高真空程序升溫脫附研究, 任麗萍, 戴維林, 董義, 喬明華, 曹勇, 范康年, 李和興, 催化學(xué)報(bào), 2003, 24, 669-673. [PDF]
19. W-SBA-15的原位合成及其在環(huán)戊烯氧化反應(yīng)中的催化性能研究, 郭昌文, 戴維林, 曹勇,范康年, 化學(xué)學(xué)報(bào), 2003, 61, 1496-1499. [PDF]
20. 甲醇脫氫制無(wú)水甲醛的高活性Ag-SiO2-Al2O3催化劑, 任麗萍, 戴維林, 曹勇, 李和興, 章文華, 范康年, 化學(xué)學(xué)報(bào), 2003, 61, 937-940. [PDF]
2002
1. Highly Efficient VOx/SBA-15 Mesoporous Catalysts for Oxidative Dehydrogenation of Propane, Y. M. Liu, Y. Cao*, K. K. Zhu, S. R. Yan, W. L. Dai, H. Y. He, K. N. Fan*, Chem. Commun. 2002, 2832-2833. [PDF]
2. A Novel Homogeneous Catalyst Made of Poly(N-vinyl-2-pyrrolidone)-CuCl2Complex for the Oxidative Carbonylation, J. C. Hu, Y. Cao, P. Yang, J. F. Deng, K. N. Fan, J. Mol. Catal. Chem. A 2002, 185, 1-9. [PDF]
3. Evidence for the Anti-oxidation Effect of Boron on the Ultra-fine Ni-B Amorphous Alloy Catalyst, W. L. Dai, H. X. Li, Y. Cao, M. H. Qiao, K. N. Fan, J. F. Deng, Langmuir 2002,18, 9605-9608. [PDF]
4. In Situ Raman Studies on the Interaction of Oxygen and Methanol with Iodine-modified Electrolytic Silver Catalyst, W. L. Dai, Y. Dong, Y. Cao, K. N. Fan, J. F. Deng, Y. Y. Liao, B. F. Hong, J. Raman Spectr. 2002, 33, 318-324. [PDF]
5. TBAB-modified Heterogeneous Wacker-type Catalysts for Highly Selective Oxidative Carbonylation of Methanol to Dimethyl Carbonate, S. C. Wang, Y. Cao, P. Yang, J. G. Hu, D. Wu, Y. H. Sun, J. F. Deng, Chem. J. Chin. Univ.-Chin. 2002, 12, 2363-2365.
6. A Novel Method to Prepare Cu/ZnO/Al2O3 Methanol Synthesis Catalyst, Z. S. Hong, Y. Cao, J. F. Deng, K. N. Fan, Chem. J. Chin. Univ.-Chin. 2002, 23, 706-708.
7. 苯在Si(111)-7×7表面化學(xué)吸附的理論研究, 李燕茶, 王文寧, 曹勇,范康年, 化學(xué)學(xué)報(bào), 2002,60, 653-659. [PDF]
8. A Convenient Alcohothermal Approach for Low Temperature Synthesis of CuO Nanoparticles, Z. S. Hong, Y. Cao, J. F. Deng, Mater. Lett. 2002, 52, 34-38. [PDF]
9. CO2 Hydrogenation to Methanol over Cu/ZnO/Al2O3 Catalysts Prepared by a Novel Gel-network-coprecipitation, Z. S. Hong, Y. Cao, J. F. Deng, K. N. Fan, Catal. Lett. 2002, 82, 37-44. [PDF]
10. Rare Earth (Y, La, Ce)-promoted V-HMS Mesoporous Catalysts for Oxidative Dehydrogenation of Propane, R. Zhou, Y. Cao, S. R. Yan, K. N. Fan, Appl. Catal. A: Gen.2002, 236, 103-111. [PDF]
11. 酰胺基改性的介孔MCM-41錨定Cu(II)雜化材料的合成和表征, 胡軍成, 曹勇, 楊平, 鄧景發(fā), 范康年, 復(fù)旦學(xué)報(bào), 2002, 41, 320-324.
12. 焙燒條件對(duì)Cu/ZnO/Al2O3甲醇催化劑的影響, 洪中山, 曹勇, 孫崎, 鄧景發(fā), 范康年, 復(fù)旦學(xué)報(bào),2002, 41, 330-334.
13. 負(fù)載型Ni-B非晶態(tài)合金的制備及其催化加氫活性研究, 劉波, 陳雪瑩, 莊繼華, 喬明華,曹勇, 朱源龍, 賀鶴勇, 范康年, 復(fù)旦學(xué)報(bào), 2002, 41, 424-428.
曹勇,教授,博士生導(dǎo)師,男,1973年出生。1995年畢業(yè)于復(fù)旦大學(xué)化學(xué)系物理化學(xué)專業(yè),獲理學(xué)學(xué)士學(xué)位。1998至2000年間于新加坡國(guó)立大學(xué)化學(xué)系攻讀聯(lián)合培養(yǎng)博士學(xué)位,2000年7月畢業(yè)于復(fù)旦大學(xué)化學(xué)系物理化學(xué)專業(yè)獲理學(xué)博士學(xué)位并留校任教至今。2001年11月破格晉升為復(fù)旦大學(xué)副教授,同年起升任碩士生導(dǎo)師。2005年1月破格晉升為復(fù)旦大學(xué)副教授博士生導(dǎo)師,同年5月升任復(fù)旦大學(xué)教授。曾主講《現(xiàn)代化學(xué)專題-表面化學(xué)》、《物理化學(xué)》和《催化反應(yīng)機(jī)理》等課程。指導(dǎo)研究生多名,其中3名已獲碩士學(xué)位。
科研上主要從事表面化學(xué)和多相催化研究,涉及高性能新結(jié)構(gòu)納米介孔催化材料的創(chuàng)制與綠色催化應(yīng)用、低碳烷烴選擇氧化制烯烴、1,3-丙二醇等聚酯原料關(guān)鍵單體的催化加氫合成、金屬/半導(dǎo)體光催化、催化過(guò)程的原位動(dòng)態(tài)譜學(xué)表征及C1資源的綜合利用等。最近主持的項(xiàng)目有國(guó)家自然科學(xué)基金(2項(xiàng))、上海市科委納米科技專項(xiàng)、上海市科委科技啟明星計(jì)劃等,并參與了973項(xiàng)目等多項(xiàng)國(guó)家級(jí)和省部級(jí)重大課題研究。2004年,作為研究骨干之一,獲國(guó)家基金委優(yōu)秀創(chuàng)新群體基金資助。在新型納米催化材料的研制及應(yīng)用、催化原位譜學(xué)表征和催化理論的研究方面取得了一定的成果,累計(jì)發(fā)表論文100余篇,其中在J. Am. Chem. Soc., Angew. Chem., J. Phys. Chem. B., Langmuir, J. Chem. Phys., J. Catal., Chem. Commun., Appl. Catal., Catal. Lett., Catal. Today, Chem. Phys. Lett., New J. Chem.等SCI源刊物上發(fā)表論文180余篇;論文被國(guó)內(nèi)外引用3000余次;申請(qǐng)中國(guó)發(fā)明專利20件(授權(quán)專利8件);參與J. Am. Chem. Soc.、J. Catal.和《高等學(xué)校化學(xué)學(xué)報(bào)》、《化學(xué)學(xué)報(bào)》、《物理化學(xué)學(xué)報(bào)》、《石油化工》等刊物的審稿。
榮譽(yù)獎(jiǎng)勵(lì):
1.2014年獲得 中國(guó)催化青年獎(jiǎng)(National Catalysis Prize for Young Scientists)
2.2009年度國(guó)家級(jí)教學(xué)成果二等獎(jiǎng)(《微觀原理引導(dǎo)的大物理化學(xué)課程建設(shè)》,范康年,陸靖,唐頤,曹勇,周鳴飛,成果序號(hào):931012)
發(fā)展多相催化新技術(shù) 創(chuàng)建綠色反應(yīng)新體系——復(fù)旦大學(xué)曹勇教授
曹勇教授長(zhǎng)期從事多相催化研究,在面向綠色與可持續(xù)催化應(yīng)用的固體催化材料的設(shè)計(jì)、合成及表征等方面取得了一定的成績(jī)。發(fā)展了系列具有“金屬”及“表面酸/堿”等多活性位協(xié)同集成結(jié)構(gòu)特征的新結(jié)構(gòu)高性能催化材料設(shè)計(jì)與合成方法,實(shí)現(xiàn)了高分散多相金屬催化材料微結(jié)構(gòu)及表面特性的精細(xì)調(diào)控。2001 年至今發(fā)表 SCI 論文 160 余篇,其中影響因子大于 3.0 論文 50 余篇,SCI他引3000 余次,10篇論文被他引40次以上,其中單篇最高他引過(guò)百次,獲得授權(quán)中國(guó)發(fā)明專利20余件。
1.基于小分子協(xié)同活化的納米金催化綠色反應(yīng)新體系探索
發(fā)現(xiàn)并揭示了小尺寸納米 Au 對(duì)于液體甲酸低溫催化選擇分解的獨(dú)特催化性能。利用反應(yīng)耦合與氫轉(zhuǎn)移策略,實(shí)現(xiàn)了溫和條件下納米金催化 CO/H2O 選擇還原極性不飽和鍵。揭示并闡明了反應(yīng)底物與 H2O 及H2等小分子間的協(xié)同活化對(duì)于溫和條件下納米金催化腈水合以及喹啉高選擇性催化加氫制四氫喹啉等反應(yīng)的重要性。以 O2及 H2O2為清潔氧源,研制出用于醇液相選擇氧化的高性能納米金催化新體系。
(1)以液體甲酸(HCOOH)為可再生能源載體的制氫/儲(chǔ)氫研究是當(dāng)前國(guó)際上能源催化領(lǐng)域十分重要的課題。針對(duì)傳統(tǒng) Pt 族多相貴金屬催化低溫液相甲酸分解體系存在的反應(yīng)效率和選擇性偏低及穩(wěn)定性不足等問(wèn)題,通過(guò)對(duì) Au 納米顆粒尺寸、催化載體及反應(yīng)介質(zhì)等關(guān)鍵參數(shù)的系統(tǒng)探究,發(fā)現(xiàn)并確立了一類基于“甲酸-三乙胺”為反應(yīng)介質(zhì)的可在環(huán)境溫度下實(shí)現(xiàn)甲酸高效選擇分解制氫的新型亞納米 Au/ZrO2催化體系,為認(rèn)識(shí)并理解 Au 對(duì)甲酸這一在催化化學(xué)研究中最具代表性的“探針?lè)肿?rdquo;的吸附及活化行為提供了新的實(shí)踐與理論依據(jù)。
(2)針對(duì)現(xiàn)有金催化還原存在的突出問(wèn)題,先后采用以異丙醇、甲酸鹽等含氫化合物為氫源以及通過(guò)與水汽變換(CO + H2O = H2 + CO2)反應(yīng)進(jìn)行耦合的氫轉(zhuǎn)移(CTH)策略,成功實(shí)現(xiàn)了溫和條件下納米金對(duì)硝基、羰基及炔基等系列不飽和官能團(tuán)的選擇可控催化還原。其中以 CO/H2O 為氫源成功實(shí)現(xiàn)在室溫常壓下硝基化合物金催化選擇還原的工作被遴選為熱點(diǎn)論文(Hot Paper)在Angew. Chem. Int. Ed. 上被予以著重介紹。
(3)在對(duì) Au 催化 CO/H2O 還原硝基的還原機(jī)制研究中發(fā)現(xiàn),H2O 解離是反應(yīng)的速控步驟。受此啟發(fā),進(jìn)而發(fā)現(xiàn)負(fù)載納米Au 催化界面處共吸附的腈基團(tuán)(CN)可顯著活化H2O 分子,使得 Au/TiO2可在80 ℃溫和條件下高效催化多類有機(jī)腈選擇水解至相應(yīng)的酰胺化合物。該發(fā)現(xiàn)被列選為ChemSusChem刊物當(dāng)期封面論文。據(jù)此進(jìn)一步探索研究了 H2與喹啉在納米 Au 上的“協(xié)同活化”行為。H2/D2交換等系列研究表明,含有堿性基團(tuán)的喹啉在溫和條件下可顯著促進(jìn)納米 Au 對(duì)H2的催化活化。由此成功實(shí)現(xiàn)了利用TiO2負(fù)載Au 催化喹啉選擇加氫高選擇性高收率制取藥物合成中極為重要的四氫喹啉化合物。與同等條件下Pd、Pt 等傳統(tǒng)貴金屬表現(xiàn)截然不同的是,在該反應(yīng)中Au 不但未表現(xiàn)出因反應(yīng)底物強(qiáng)吸附導(dǎo)致的中毒失活現(xiàn)象,反而表現(xiàn)出獨(dú)特的“底物自促進(jìn)效應(yīng)”。
(4)在對(duì)以 O2為氧源的醇液相選擇氧化研究中,從載體設(shè)計(jì)與優(yōu)化入手,以具獨(dú)特脫氫特性的Ga-Al 復(fù)合氧化物為載體獲得了高活性的Au/Ga3Al3O9催化劑。與此同時(shí),針對(duì)“非活潑”脂肪醇的選擇氧化,嘗試將H2O2引入納米金催化醇氧化反應(yīng)中,發(fā)現(xiàn)H2O2-Au/TiO2對(duì)于脂肪醇選擇氧化特別有效,為納米金在環(huán)境友好選擇氧化中的應(yīng)用開(kāi)拓了新方向。相關(guān)系列論文自 2008 年以來(lái)已獲包括Chem. Rev.、Chem. Soc. Rev.、Angew. Chem.、J. Am. Chem. Soc.等在內(nèi)的一流期刊 150 余次引用與評(píng)述。
2.涉及多活性位協(xié)同集成的多相催化級(jí)聯(lián)反應(yīng)體系的構(gòu)建
揭示并闡明了多活性位協(xié)同集成及級(jí)聯(lián)反應(yīng)策略用于調(diào)控反應(yīng)通道及實(shí)現(xiàn)高選擇性綠色合成的重要性,發(fā)展出從醇、硝基化合物等簡(jiǎn)單原料出發(fā)“一步”清潔合成酯、亞胺、仲胺、喹啉及偶氮化合物等精細(xì)復(fù)雜分子的幾類高性能納米 Au 及Ir基催化反應(yīng)新體系;以氧化鋯為載體制備了同時(shí)對(duì)甲酸分解制氫與生物基乙酰丙酸的選擇還原制γ-戊內(nèi)酯以及甘油氫解制正丙醇具高活性的新型納米Au/ZrO2與Ir/ZrO2系列催化劑,在探索將固體催化材料用于生物質(zhì)原料高值利用方面取得了進(jìn)展。
(1)盡可能減少?gòu)?fù)雜精細(xì)有機(jī)分子合成所需的反應(yīng)步驟是現(xiàn)代合成化學(xué)所面臨的重要挑戰(zhàn)之一。以“多活性位協(xié)同集成”概念為指導(dǎo)可望研制出用于綠色級(jí)聯(lián)合成的高效“多功能”固體催化劑。設(shè)計(jì)了一類兼具“選擇氧化”及“催化縮合”雙功能特性的Au/-Ga2O3催化體系,成功實(shí)現(xiàn)了醇、醛等化合物溫和條件下“一步”法直接選擇氧化制取在香料工業(yè)中極為重要的芳酯類化合物。基于類似思路,利用兼具酸堿及氧化等“多功能”特性的磷灰石載 Au 催化體系成功實(shí)現(xiàn)了亞胺、肟及具生理活性的α-氨基亞磷酸酯類化合物等重要精細(xì)中間體的高效、清潔、簡(jiǎn)約合成,為“多活性位協(xié)同集成”策略在藥物中間體等復(fù)雜精細(xì)有機(jī)分子綠色合成領(lǐng)域中的應(yīng)用提供了新范例。
(2)基于有關(guān)氧化物載Au催化體系兼具良好“醇脫氫活化”及“轉(zhuǎn)移加氫”性能的發(fā)現(xiàn),在TiO2負(fù)載的小尺寸納米Au(~2 nm)催化劑上實(shí)現(xiàn)了計(jì)量胺/醇經(jīng)“脫氫–縮合–加氫”等多級(jí)連續(xù)步驟的“一步式借氫偶聯(lián)”高選擇性合成仲胺類化合物的反應(yīng)。最近還進(jìn)一步實(shí)現(xiàn)了以醇為烷基化試劑的納米Au催化廉價(jià)硝基化合物一步N-烷基化高選擇性合成仲胺及叔胺等高級(jí)胺的反應(yīng)。采用類似策略,在對(duì)以Au為主的催化活性金屬的篩選中,發(fā)現(xiàn)TiO2負(fù)載的亞納米Ir可直接催化硝基與乙醇等低碳醇高收率直接合成喹啉化合物。在上述發(fā)現(xiàn)基礎(chǔ)上,最近通過(guò)對(duì)載體表面酸、堿及Au加氫活性位濃度的精細(xì)調(diào)控與優(yōu)化,進(jìn)一步實(shí)現(xiàn)了對(duì)芳硝基選擇加氫過(guò)程反應(yīng)通道的調(diào)控,并實(shí)現(xiàn)了以防硝基為原料對(duì)液晶、染料及藥物合成中重要的偶氮類化合物的直接加氫合成。
“多活性協(xié)同位集成”用于高性能固體催化劑設(shè)計(jì)研究思路對(duì)于面向可持續(xù)綠色合成的催化體系的創(chuàng)制及發(fā)展節(jié)能降耗的過(guò)程強(qiáng)化技術(shù)具重要意義,此方向系列論文已獲包括Chem. Rev.和Natutre Chemistry等在內(nèi)的一流期刊80余次引用與評(píng)述。
(3)為應(yīng)對(duì)日益嚴(yán)峻的能源與資源危機(jī),世界各國(guó)近年來(lái)高度重視可再生的纖維素等生物質(zhì)資源的開(kāi)發(fā)利用。在發(fā)展“不用 H2”的生物質(zhì)精煉催化新體系研究方面,以 ZrO2負(fù)載亞納米 Au 為催化劑實(shí)現(xiàn)了以甲酸為價(jià)廉替代氫源選擇還原乙酰丙酸制-戊內(nèi)酯這一重要的可再生高值化學(xué)品,解決了長(zhǎng)期以來(lái)加氫脫氧等關(guān)鍵過(guò)程所面臨的依賴化石源 H2等問(wèn)題;在實(shí)用可行的生物質(zhì)精煉催化新體系的創(chuàng)設(shè)方面,進(jìn)一步發(fā)展了Cu/ZrO2催化甲酸選擇氫解甘油等過(guò)程的非貴金屬催化體系;在面向可再生大宗化學(xué)品合成的非石油基催化路線的設(shè)計(jì)與構(gòu)建方面,提出并發(fā)展了一條經(jīng)由正丙醇關(guān)鍵中間體的甘油“選擇氫解–脫水”生物質(zhì)制丙烯增產(chǎn)新技術(shù)。
來(lái)源:科學(xué)成果管理與研究 2015年第8期
中國(guó)科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開(kāi)放共享平臺(tái)(簡(jiǎn)稱:中國(guó)科技創(chuàng)新人物云平臺(tái))免責(zé)聲明:
1、中國(guó)科技創(chuàng)新人物云平臺(tái)是:“互聯(lián)網(wǎng)+科技創(chuàng)新人物”的大型云平臺(tái),平臺(tái)主要發(fā)揮互聯(lián)網(wǎng)在生產(chǎn)要素配置中的優(yōu)化和集成作用,將互聯(lián)網(wǎng)與科技創(chuàng)新人物的創(chuàng)新成果深度融合于經(jīng)濟(jì)社會(huì)各領(lǐng)域之中,提升實(shí)體經(jīng)濟(jì)的創(chuàng)新力和生產(chǎn)力,形成更廣泛的以互聯(lián)網(wǎng)為基礎(chǔ)設(shè)施和實(shí)現(xiàn)工具的經(jīng)濟(jì)發(fā)展新形態(tài),實(shí)現(xiàn)融合創(chuàng)新,為大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新提供智力支持,為產(chǎn)業(yè)智能化提供支撐,加快形成經(jīng)濟(jì)發(fā)展新動(dòng)能,促進(jìn)國(guó)民經(jīng)濟(jì)提質(zhì)增效升級(jí)。
2、中國(guó)科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開(kāi)放共享平臺(tái)內(nèi)容來(lái)源于互聯(lián)網(wǎng),信息都是采用計(jì)算機(jī)手段與相關(guān)數(shù)據(jù)庫(kù)信息自動(dòng)匹配提取數(shù)據(jù)生成,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如果發(fā)現(xiàn)信息存在錯(cuò)誤或者偏差,歡迎隨時(shí)與我們聯(lián)系,以便進(jìn)行更新完善。
3、如果您認(rèn)為本詞條還有待完善,請(qǐng)編輯詞條。
4、如果發(fā)現(xiàn)中國(guó)科技創(chuàng)新人物云平臺(tái)提供的內(nèi)容有誤或轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)及時(shí)向本站反饋,網(wǎng)站編輯部郵箱:kjcxac@126.com。
5、中國(guó)科技創(chuàng)新人物云平臺(tái)建設(shè)中盡最大努力保證數(shù)據(jù)的真實(shí)可靠,但由于一些信息難于確認(rèn)不可避免產(chǎn)生錯(cuò)誤。因此,平臺(tái)信息僅供參考,對(duì)于使用平臺(tái)信息而引起的任何爭(zhēng)議,平臺(tái)概不承擔(dān)任何責(zé)任。