|
|
熊宇杰,中國科學(xué)技術(shù)大學(xué)教授、博士生導(dǎo)師,1979年出生于江西省吉安市。多年來一直致力于發(fā)展無機(jī)固體的精準(zhǔn)制備化學(xué),應(yīng)用于催化劑設(shè)計(jì)和柔性器件制造。2011年在中國科學(xué)技術(shù)大學(xué)工作以來,圍繞固體催化材料體系,致力于發(fā)展相關(guān)材料表面和界面結(jié)構(gòu)精準(zhǔn)可控的合成方法(“無機(jī)納米化學(xué)”和“無機(jī)合成與制備化學(xué)”),以合成獲得的具有精準(zhǔn)可控結(jié)構(gòu)的材料模型為研究對(duì)象,建立表界面結(jié)構(gòu)與催化性能之間的構(gòu)效關(guān)系(“固體結(jié)構(gòu)化學(xué)”和“表面與界面化學(xué)”),發(fā)展決定催化過程中各個(gè)步驟的關(guān)鍵材料參數(shù)設(shè)計(jì)原則。
教育及工作經(jīng)歷:
2011年至今,中國科學(xué)技術(shù)大學(xué),任化學(xué)與材料科學(xué)學(xué)院教授、博導(dǎo),并雙聘于合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室(籌)2009年-2011年,美國華盛頓大學(xué)(圣路易斯),任國家納米技術(shù)基礎(chǔ)設(shè)施組織首席研究員,并兼任納米中心管理主任。
2007年-2009年,美國伊利諾伊大學(xué)香檳分校,任材料與科學(xué)工程系助理研究員(合作導(dǎo)師:Prof. John A. Rogers)
2004年-2007年,美國華盛頓大學(xué)(西雅圖),任化學(xué)系博士后(合作導(dǎo)師:Prof. Younan Xia)
2000年-2004年,中國科學(xué)技術(shù)大學(xué)化學(xué)系,獲無機(jī)化學(xué)博士學(xué)位(導(dǎo)師:謝毅院士)。
1996年-2000年,中國科學(xué)技術(shù)大學(xué)少年班系00班,獲化學(xué)物理學(xué)士學(xué)位(導(dǎo)師:謝毅院士)。
學(xué)術(shù)、社會(huì)及機(jī)構(gòu)任職:
1、安徽省青年聯(lián)合會(huì)第十屆委員會(huì)委員,2011年至今。
2、歐美同學(xué)會(huì)千人計(jì)劃專家聯(lián)誼會(huì)化學(xué)化工專業(yè)委員會(huì)委員,2012年至今。
3、中國化學(xué)會(huì)青年化學(xué)工作者委員會(huì)委員,2014年至今。
4、第五屆中國青年科技工作者協(xié)會(huì)會(huì)員,2014年至今。
5、Board Committee Member,International Academy of Electrochemical Energy Science (IAOEES),2014年至今。
6、Editorial Board Member,Scientific Reports (Nature Publishing Group),2014年至今。
7、Senior Editor,Journal of Nanoscience Letters (Cognizure),2014年至今。
8、Editorial Board Member,Progress in Natural Science: Materials International (Elsevier),2014年至今。
9、Editorial Board Member,JSM Cell (JSciMed Central),2013年至今。
10、《中國化學(xué)快報(bào)》青年編委,2014年至今。
11、Journal of the American Chemical Society、Angewandte Chemie、Nature Communications、Chemical Society Reviews、Advanced Materials、Nano Letters、ACS Nano、Advanced Functional Materials、Advanced Energy Materials等60余種國際期刊的審稿人。
培養(yǎng)研究生情況:
目前正在培養(yǎng)碩士和博士研究生22名,已畢業(yè)博士生6名、碩士生1名,其中2名研究生獲得研究生最高獎(jiǎng)“中國科學(xué)院院長特別獎(jiǎng)”、8名研究生獲得“研究生國家獎(jiǎng)學(xué)金”、4名研究生獲得中國科學(xué)院“朱李月華獎(jiǎng)學(xué)金”、1名研究生獲得“牛津儀器明日之星獎(jiǎng)學(xué)金“、2名研究生獲得“興業(yè)全球責(zé)任獎(jiǎng)學(xué)金”、1名研究生獲得“光華獎(jiǎng)學(xué)金”、2名研究生獲得“中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金”資助。自2011年以來,已指導(dǎo)本科生畢業(yè)論文22名和校級(jí)“大學(xué)生研究計(jì)劃”學(xué)生12名,其中3個(gè)團(tuán)隊(duì)獲得“國家大學(xué)生創(chuàng)新訓(xùn)練計(jì)劃項(xiàng)目”資助、1名學(xué)生獲中國科學(xué)技術(shù)大學(xué)最高獎(jiǎng)“郭沫若獎(jiǎng)學(xué)金”。
研究方向:
面向全球性的能源與環(huán)境方面的重大需求,本課題組在潔凈能源與節(jié)能技術(shù)方面開展一系列的材料研究工作。主要將納米制造技術(shù)與可控合成方法相結(jié)合,通過對(duì)無機(jī)材料性質(zhì)和功能的調(diào)控,在理論上揭示納米結(jié)構(gòu)與產(chǎn)品中的能量傳遞及轉(zhuǎn)化性能演變規(guī)律,在實(shí)驗(yàn)上優(yōu)化納米結(jié)構(gòu)及器件的結(jié)構(gòu)特征,促進(jìn)光能、電能、熱能與化學(xué)能之間的相互轉(zhuǎn)換,形成由能量轉(zhuǎn)換、能量存儲(chǔ)到節(jié)能器件的一條龍?bào)w系。本課題組的研究屬于交叉學(xué)科,涉及化學(xué)、材料、物理以及電子等學(xué)科領(lǐng)域。
研究總體思路:功能材料的開發(fā)及應(yīng)用發(fā)展到目前階段,已遇到一定的瓶頸,關(guān)鍵問題在于單一材料體系已然無法突破性能上的限制并滿足應(yīng)用領(lǐng)域的需求。每種特定的材料都具有某方面獨(dú)特的性能及優(yōu)勢(shì),例如金屬在分子吸附與活化和表面等離子激元方面的特性、半導(dǎo)體在光致電子-空穴分離方面的性質(zhì)、以及石墨烯等碳材料在二維限域體系中的電子傳輸優(yōu)勢(shì)等。因而材料的復(fù)合是突破單一材料性能上瓶頸的有效途徑,并且可以通過協(xié)同作用增強(qiáng)各自的性能,比如半導(dǎo)體和金屬復(fù)合后有利于降低其電子-空穴復(fù)合。然而復(fù)合材料的性能通常很難實(shí)現(xiàn)材料各自優(yōu)秀性能的疊加,其中關(guān)鍵的瓶頸問題是:1)在實(shí)現(xiàn)材料復(fù)合的同時(shí),很難做到組成單元各自的表面調(diào)控;2)復(fù)合材料體系界面的結(jié)構(gòu)調(diào)控極為困難。無機(jī)材料調(diào)控的基礎(chǔ)是化學(xué),因此本課題以無機(jī)化學(xué)為調(diào)控手段,探索功能復(fù)合材料體系的表/界面的形成機(jī)理、構(gòu)效關(guān)系及調(diào)控方法,實(shí)現(xiàn)多種材料性能的復(fù)合與協(xié)同,以優(yōu)化其在“二氧化碳轉(zhuǎn)化與分解水制氫”和“柔性無機(jī)太陽能電池”兩個(gè)應(yīng)用中的性能。具體到應(yīng)用體系,光催化和太陽能電池是目前緩解能源與環(huán)境危機(jī)的兩個(gè)重要應(yīng)用,其原理和過程上有很多的共同點(diǎn),比如光子的吸收、電子-空穴分離等。本課題組從“以能量轉(zhuǎn)換為應(yīng)用導(dǎo)向、以物理機(jī)制為理論先導(dǎo)、以無機(jī)化學(xué)為調(diào)控手段”出發(fā),以期實(shí)現(xiàn)復(fù)合材料的可控生長、合成及構(gòu)筑,探索材料的構(gòu)效關(guān)系(包括表面和界面結(jié)構(gòu)、成分、尺寸等),確立材料協(xié)同工作原理(光電相互作用、電子空穴分離、電子轉(zhuǎn)移、等離子體激元效應(yīng)等),力求構(gòu)筑出具有復(fù)合協(xié)同功能的材料體系。
1. 面向潔凈能源的納米催化劑設(shè)計(jì)
二氧化碳轉(zhuǎn)化燃料的催化反應(yīng)由于其獨(dú)特的可降低大氣中二氧化碳含量并同時(shí)產(chǎn)生燃料來源的特點(diǎn),在未來的能源環(huán)境應(yīng)用領(lǐng)域中將起很重要的作用。近年來,金屬納米催化劑作為二氧化碳光催化轉(zhuǎn)化反應(yīng)催化劑(金屬-半導(dǎo)體復(fù)合結(jié)構(gòu))的重要組成部分,已經(jīng)取得了一些進(jìn)展,并且證實(shí)了其有效性,但是其催化活性與選擇性有待提高。為了進(jìn)一步開拓金屬納米催化劑在此領(lǐng)域中的應(yīng)用,課題組提出了通過納米晶的可控合成與新的表征手段來設(shè)計(jì)與合成高效的二氧化碳光催化轉(zhuǎn)化燃料的催化劑的構(gòu)想和實(shí)施方案。在此同時(shí),本課題組還將此類納米催化劑的設(shè)計(jì)與合成方法應(yīng)用于電催化和有機(jī)催化中,以開發(fā)其在燃料電池和生物質(zhì)轉(zhuǎn)化等潔凈能源中的應(yīng)用。
2. 高效柔性光電器件的微納制造
傳統(tǒng)的無機(jī)光電器件(如太陽能電池和發(fā)光二極管等)必須加工成堅(jiān)硬的板塊狀物件,限制了其許多日常用途。相比之下,柔性器件重量輕、且可以折疊、卷曲、粘貼在曲面上(如汽車玻璃、屋頂、衣服等)。因此業(yè)界在致力于提高器件的光電轉(zhuǎn)換效率的同時(shí),也在不斷努力提高其力學(xué)柔性,以使其能夠早日便利地應(yīng)用到日常生活和高端用途中。目前有機(jī)光電器件由于有機(jī)分子的獨(dú)特韌性,已經(jīng)較早地應(yīng)用于柔性器件的設(shè)計(jì)與加工中。然而,有機(jī)光電器件的光電轉(zhuǎn)換效率等性能遠(yuǎn)低于無機(jī)光電材料,因此如何克服無機(jī)半導(dǎo)體晶片極脆易碎的缺點(diǎn),是開發(fā)出高性能的無機(jī)光電器件的關(guān)鍵問題之一。本課題組將從無機(jī)材料化學(xué)的角度,通過結(jié)合“自下而上”和“自上而下”兩方面的納米科技方法,在材料的設(shè)計(jì)合成與微納加工、光電轉(zhuǎn)換機(jī)制與器件設(shè)計(jì)集成等層次上,對(duì)無機(jī)半導(dǎo)體的微納化和薄膜化開展系統(tǒng)而深入的研究工作,為其在太陽能轉(zhuǎn)換和發(fā)光器件方面的應(yīng)用提供新技術(shù)。特別的是,本課題組將具有可控表面等離子體激元特性的金屬納米結(jié)構(gòu)集成于器件中,起到增強(qiáng)太陽能電池的光吸收和發(fā)光二極管的出光效率等調(diào)光作用,以保證半導(dǎo)體材料在納米尺度下的光電性能。
承擔(dān)科研項(xiàng)目情況:
1. Infrastructure-Based Joint Grant, National Natural Science Foundation of China (NSFC), Investigation for the Relationship between Surface Structures of Metal Oxides and Performance of Photocatalytic CO2 Conversion Based on Synchrotron Radiation Techniques, 2016-2018
2. Regular Grant, National Natural Science Foundation of China (NSFC), Design and Synthesis of Semiconductor-Metal Hybrid Structures for CO2 Photocatalytic Conversion, 2015-2018
3. National Basic Research Program of China, Ministry of Science and Technology, Coupling and Evolution of Electronic States at the Surface and Interface of Photocatalytic Systems, 2014-2019
4. Specialized Research Fund for the Doctoral Program of Higher Education (for PhD Advisors), Ministry of Education, Inorganic Materials Design for Novel Flexible Solar Conversion Devices, 2013-2015
5. USTC Grant for Key Research Projects, Fundamental Research Funds for the Central Universities, Micro- and Nanostructure Design of Catalysts for Efficient Use of Carbon Resource, 2013-2015
6. Research Innovation Team, Fundamental Research Funds for the Central Universities, Construction and Function Control of Hybrid Nanoscale Systems Based on Low-Dimensional Carbon Materials, 2013-2015
7. Key Research Plan for Nanofabrication, National Natural Science Foundation of China (NSFC), Nanofabrication for High-Efficient, Flexible Thin-Film Monocrystalline Silicon Photovoltaics, 2012-2014
8. Young Investigator Grant, National Natural Science Foundation of China (NSFC), Design, Synthesis and Mechanism Studies of Nanocatalysts for the Conversion of CO2 to Fuels, 2012-2014
9. National Recruitment Program of Global Experts, and Hundred Talent Program, Chinese Academy of Sciences, 2012-2014
10. Young Investigator Grant for Basic Research, Hok Ying Tung Education Foundation, Micro- and Nanostructures in the High-Efficient, Flexible Thin-Film Monocrystalline Silicon Photovoltaics, 2012-2014
11. USTC startup package, University of Science and Technology of China, 2011-2012
12. St. Louis Institute of Nanomedicine (SLIN) Pilot Grant, Missouri Life Sciences Research Board, Correlation of Metallic Nanoparticle Toxicity with Physiochemical Properties, 2010-2011
研究成果:
已在Science、Journal of the American Chemical Society、Angewandte Chemie、Chemical Society Reviews、Advanced Materials等國際刊物上發(fā)表論文110余篇,2014年和2015年連續(xù)兩年入選Elsevier發(fā)布的“中國高被引學(xué)者(化學(xué))”榜單。研究論文已被引用10,000余次(H因子為47),其中29篇論文單篇引用過百次,最高單篇引用2,000余次,18篇論文被ESI評(píng)為近十年高引頻論文。研究成果被紐約時(shí)報(bào)、路透社、美國廣播公司、英國廣播公司、美國國家廣播公司、麻省理工技術(shù)評(píng)論、美國化學(xué)與工程新聞、探索頻道、美國新聞與世界報(bào)道等國際媒體、網(wǎng)站報(bào)道轉(zhuǎn)載。1項(xiàng)成果入選中國科學(xué)院2013年度重大科技基礎(chǔ)設(shè)施重要成果。獲得美國專利1項(xiàng)和中國專利4項(xiàng)。
發(fā)明專利:
1. A Type of Palladium Nanocrystal and Its Synthesis. Xiong, Y. and Long, R., China Patent Application 201510891010.3
2. Metal Crystalline Nanostructures and Methods for Their Preparation. Xia, Y. and Xiong, Y., US Patent No. 8,257,465
3. Synthesis of alpha-Fe2O3 Catalysts for the Oxidization of Carbon Monoxide. Xie, Y.; Xiong, Y. and Li, Z., China Patent ZL 200410014545.4
4. Aqueous Synthesis of Aligned Ferric Oxyhydroxide Nanowires on Homogenous Substrates. Xie, Y. and Xiong, Y., China Patent ZL 03132256,5
5. Hydrothermal Synthesis of Metal Phosphide Nanowires. Xie, Y.; Xiong, Y. and Li, Z., China Patent ZL 03131771,5
6. Hydrothermal Synthesis of Wurtzite-Type Nitride Nanocrystals and Their Alloy Nanocrystals. Xie, Y. and Xiong, Y., China Patent ZL 03132257.3
Book Chapters:
1. Interactions of Metallic Nanocrystals with Small Molecules. Long, R.; Xiong, Y.,* Metallic Nanostructures: From Controlled Synthesis to Applications (Eds., Xiong, Y.; Lu, X.), Springer (2014).
2. Metallic Nanostructures for Electronics and Optoelectronics. Zhou, S.; Xiong, Y.,* Metallic Nanostructures: From Controlled Synthesis to Applications (Eds., Xiong, Y.; Lu, X.), Springer (2014).
3. Some Recent Development in the Solution-Phase Synthesis of One-Dimensional Inorganic Nanostructures. Xiong, Y.,* One-Dimensional Nanomaterials (Ed., Zhou, Y.), Press of the University of Science and Technology of China (2009).
4. Shape-Controlled Synthesis of Palladium Nanostructures. Xiong, Y. and Xia, Y.*, Functional Nanomaterials: A Chemistry and Engineering Perspective (Eds., Chen, S.; Lin, W.), Press of the University of Science and Technology of China (2008).
5. Application of Coordination Chemistry in the Fabrication of Inorganic Nanostructures . Xie, Y.*; Xiong, Y. and Li, Z., Frontal Nanotechnology Research (Ed., Berg, M. V.), Nova Science Publishers, Inc., Chapter 2, P. 41-59 (2007).
6. Gamma-Irradiation Preparation of Nanomaterials. Xie, Y.* and Xiong, Y., Encyclopedia of Nanoscience and Nanotechnology (Ed., Nalwa, H. S.), American Scientific Publishers, Vol. 3, No. 1, P. 731-748 (2004).
Journal Articles (in chronological order): * Corresponding Author
2016
123. Enhanced Full-Spectrum Water Splitting by Confining Plasmonic Au Nanoparticles in N-doped TiO2 Bowl Nanoarrays. Wang, X.; Long, R.; Liu, D.; Yang, D.; Wang, C. and Xiong, Y.*, Nano Energy DOI: 10.1016/j.nanoen.2016.04.013.
122. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot Electron Injection into Silicon Nanowire Arrays PDF. Liu, D.; Yang, D.; Gao, Y.; Ma, J.; Long, R.; Wang, C. and Xiong, Y.*, Angew. Chem. Int. Ed. 55, 4577-4581 (2016).
-> Selected as a VIP Paper of Angewandte Chemie.
121. Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution PDF. Du, N.; Wang, C.; Wang, X.; Lin, Y.; Jiang, J. and Xiong, Y.*, Adv. Mater. 28, 2077-2084 (2016).
120. Integration of Multiple Plasmonic and Co-catalyst Nanostructures on TiO2 Nanosheets for Visible-near-infrared Photocatalytic Hydrogen Evolution PDF Jiang, W.; Bai, S.;* Wang, L.; Wang, X.; Yang, L.; Li, Y.; Liu, D.; Wang, X.; Li, Z.; Jiang, J. and Xiong, Y.*, Small 12, 1640-1648 (2016).
-> Selected as a 2/2016 Most-Accessed Article of Small.
119. Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage.Piao, J.; Liu, D.; Hu, K.; Wang, L.; Gao, F.; Xiong, Y.* and Yang, L.*, ACS Appl. Mater. Interf. 8, 2847-2856 (2016).
118. Pd-Ag Alloy Hollow Nanostructures with Interatomic Charge Polarization for Enhanced Electrocatalytic Formic Acid Oxidation PDF. Liu, D.; Xie, M.; Wang, C.;* Liao, L.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.* and Xiong, Y.*, Nano Res. DOI: 10.1007/s12274-016-1053-6.
117. Incorporation of Pd into Pt Co-catalysts toward Enhanced Photocatalytic Water Splitting PDF.Bai, S.; Xie, M.; Kong, Q.; Jiang, W.; Qiao, R.; Li, Z.;* Jiang, J.* and Xiong, Y.*, Part. Part. Syst. Charact. DOI: 10.1002/ppsc.201500239 (invited research article for the special issue “Energy and Catalysis Research in China”).
116. Atomic Layer Deposition on Pd Nanocrystals for Forming Pd-TiO2 Interface toward Enhanced CO Oxidation. Bai, Y.; Wang, C.; Zhou, X.; Lu, J.* and Xiong, Y.*, Prog. Nat. Sci. Mater. Int. in press (invited research article for the special issue “Nanomaterials and Energy Applications”).
115. Cu/TiO2 Octahedral-Shell Photocatalysts Derived from Metal-Organic Framework @ Semiconductor Hybrid Structures PDF. Li, R.; Wu, S.; Wan, X.; Xu, H.* and Xiong, Y.*, Inorg. Chem. Front. 3, 104-110 (2015) (invited research article for the inaugural “Emerging Investigators” themed collection).
114. Long-term Production of H2 over Pt/CdS Nanoplates under Sunlight Illumination. Feng, J.; An, C.*; Dai, L.; Liu, J.; Wei, G.; Bai, S.; Zhang, J.* and Xiong, Y.*, Chem. Eng. J. 283, 351-357 (2016).
2015
113. Boosting Photocatalytic Water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-shell Co-catalyst PDF. Bai, S.; Yang, L.; Wang, C.; Lin, Y.; Lu, J.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 14810-14814 (2015).
-> Selected as a VIP Paper of Angewandte Chemie.
112. A New Cubic Phase for NaYF4 Host Matrix Offering High Upconversion Luminescence Efficiency PDF. Wang, L.; Li, X.; Li, Z.; Chu, W.; Li, R.; Lin, K.; Qian, H.; Wang, Y.; Wu, C.; Li, J.; Tu, D.; Zhang, Q.; Song, L.; Jiang, J.*; Chen, X.; Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 27, 5528-5533 (2015).
111. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation PDF.Long, R.; Huang, H.; Li, Y.; Song, L. and Xiong, Y.*, Adv. Mater. 27, 7025-7042 (2015) (invited research progress).
110. Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations PDF.Bai, S.; Jiang, J.; Zhang, Q. and Xiong, Y.*, Chem. Soc. Rev. 44, 2893-2939 (2015).
-> Featured on the back cover of Chemical Society Reviews.
109. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis PDF. Chen, Y. Z.; Wang, C.; Wu, Z. Y.; Xiong, Y.*; Xu, Q.; Yu, S. H. and Jiang, H. L.*, Adv. Mater. 27, 5010-5016 (2015).
108. Toward Enhanced Photocatalytic Oxygen Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection PDF. Bai, S.; Li, X.; Kong, Q.; Long, R.; Wang, C.; Jiang, J. and Xiong, Y.*, Adv. Mater. 27, 3444-3452 (2015).
107. Novel Pt Multicubes Prepared by Ni2+-mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction PDF. Ma, L.; Wang, C.; Xia, B. Y.; Mao, K.; He, J.; Wu, X.; Xiong, Y.* and Lou, X. W.*, Angew. Chem. Int. Ed. 54, 5666-5671 (2015).
106. The Nature of Photocatalytic “Water Splitting” on Silicon Nanowires PDF. Liu, D.; Li, L.; Gao, Y.; Wang, C.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 2980-2985 (2015).
-> Selected as a Hot Paper of Angewandte Chemie.
105. Efficiently Coupling Solar Energy into Catalytic Hydrogenation by Well-Designed Pd Nanostructures PDF. Long, R.; Rao, Z.; Mao, K.; Li, Y.; Zhang, C.; Liu, Q.; Wang, C.; Li, Z. Y.; Wu, X. and Xiong, Y.*, Angew. Chem. Int. Ed. 54, 2425-2430 (2015).
104. Some Recent Developments in Surface and Interface Design for Photocatalytic and Electrocatalytic Hybrid Structures PDF.Bai, S. and Xiong, Y.*, Chem. Commun. 51, 10261-10271 (2015) (invited feature article).
103. Surface and Interface Engineering in Photocatalysis PDF. Bai, S.; Jiang, W.; Li, Z. and Xiong, Y.*, ChemNanoMat 1, 223-239 (2015) (invited review article).
102. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis PDF. Long, R.; Li, Y.; Song, L. and Xiong, Y.*, Small 11, 3873-3889 (2015) (invited review article).
101. Towards Full-spectrum Photocatalysis: Achieving Z Scheme between Ag2S and TiO2 by Engineering Energy Band Alignment with Interfacial Ag PDF. Li, Y.; Li, L.; Gong, Y.; Bai, S.; Ju, H.; Wang, C.; Xu, Q.; Zhu, J.; Jiang, J.* and Xiong, Y.*, Nano Res. 8, 3621-3629 (2015).
100. Etching Approach to Hybrid Structures between PtPd Nanocages and Graphene towards Efficient Oxygen Reduction Reaction PDF.Bai, S.; Wang, C.*; Jiang, W.; Du, N.; Li, J.; Du, J.; Long, R.; Li, Z. and Xiong, Y.*, Nano Res. 8, 2789-2799 (2015).
99. Enhancing the Catalytic Efficiency of the Heck Coupling Reaction by Forming 5 nm Pd Octahedrons Using Kinetic Control PDF. Long, R.; Wu, D.; Li, Y.; Bai, Y.; Wang, C.; Song, L. and Xiong, Y.*, Nano Res. 8, 2115-2123 (2015).
98. Chemically Exfoliated Metallic MoS2 Nanosheets: A Promising Supporting Co-catalyst for Enhancing Photocatalytic Performance of TiO2 Nanocrystals PDF. Bai, S.; Wang, L.; Chen, X.; Du, J. and Xiong, Y.*, Nano Res. 8, 175-183 (2015).
-> Selected as an ESI Highly Cited Paper.
97. Pd-Ag Alloy Nanocages: Integration of Ag Plasmonic Properties with Pd Active Sites for Light-Driven Catalytic Hydrogenation PDF.Zhao, X.; Long, R.; Liu, D.; Luo, B. and Xiong, Y.*, J. Mater. Chem. A 3, 9390-9394 (2015).
96. Composition-Dependent Activity of Cu-Pt Alloy Nanocubes for Electrocatalytic CO2 Reduction PDF.Zhao, X.; Luo, B.; Long, R.; Wang, C. and Xiong, Y.*, J. Mater. Chem. A 3, 4134-4138 (2015).
95. Precise Control over the Surface and Interface Structures of Nanocatalysts PDF. Bai, S. and Xiong, Y.*, Sci. Adv. Today 1, 25215 (2015) (invited review article for 2015 Nanoscience Research Leader Award).
94. Recent Advances in Surface and Interface Engineering for Electrocatalysis PDF. Wang, C.*; Bai, S. and Xiong, Y.*, Chin. J. Catal. 36, 1476-1493 (2015) (invited review article for 2013 Young Chemist Award by the Chinese Chemical Society).
93. Recent Advances in Two-Dimensional Nanostructures for Catalysis Applications.Bai, S. and Xiong, Y.*, Sci. Adv. Mater. 7, 2168-2181 (2015) (invited review article).
-> Selected as an ESI Hot Paper.
92. Stable Metallic 1T-WS2 Nanoribbons Intercalated with Ammonia Ions: The correlation between Structure and Electrical/Optical Properties. Liu, Q.; Li, X.; Xiao, Z.; Zhou, Y.; Chen, H.; Xiang, T.; Xu, J.; Chu, W.; Wu, X.;* Yang, J.; Wang, C.; Xiong, Y.; Jin, C.; Ajayan, P. M. and Song, L.*, Adv. Mater. 27, 4837-4844 (2015).
91. Large-area Synthesis of Monolayer WSe2 on SiO2/Si Substrate and its Device Applications. Huang, J.; Yang, L.; Liu, D.; Chen, J.; Fu, Q.; Xiong, Y.; Lin, F. and Xiang, B.*, Nanoscale 7, 4193-4198 (2015).
2014
90. Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization PDF.Bai, Y.; Zhang, W.; Zhang, Z.; Zhou, J.; Wang, X.; Wang, C.; Huang, W.*; Jiang, J.* and Xiong, Y.*, J. Am. Chem. Soc. 136, 14650-14653 (2014).
89. Surface Polarization Matters: Enhancing the Hydrogen Evolution Reaction by Shrinking Pt Shells in Pt-Pd-Graphene Stack Structures PDF. Bai, S.; Wang, C.; Deng, M.; Gong, M.; Bai, Y.; Jiang, J. and Xiong, Y.*, Angew. Chem. Int. Ed. 53, 12120-12124 (2014).
-> Featured on the back cover of Angewandte Chemie.
88. Oxidative Etching for Controlled Synthesis of Metal Nanocrystals: Atomic Addition and Subtraction PDF. Long, R.; Zhou, S.; Wiley, B. J.* and Xiong, Y.*, Chem. Soc. Rev. 43, 6288-6310 (2014).
-> Featured on the inside front cover of Chemical Society Reviews.
87. Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis PDF. Wang, L.; Ge, J.; Wang, A.; Deng, M.; Wang, X.; Bai, S.; Li, R.; Jiang, J.;* Zhang, Q.;* Luo, Y. and Xiong, Y.*, Angew. Chem. Int. Ed. 53, 5107-5111 (2014).
86. Tunable Oxygen Activation for Catalytic Organic Oxidation: Schottky Junction versus Plasmonic Effect PDF .Long, R.; Mao, K.; Gong, M.; Zhou, S.; Hu, J.; Zhi, M.; You, Y.; Bai, S.; Jiang, J.; Zhang, Q.;* Wu, X.* and Xiong, Y.*, Angew. Chem. Int. Ed. 53, 3205-3209 (2014).
85. A Unique Semiconductor-Metal-Graphene Stack Design to Harness Charge Flow for Photocatalysis PDF. Bai, S.; Ge, J.; Wang, L.; Gong, M.; Deng, M.; Kong, Q.; Song, L.; Jiang, J.;* Zhang, Q.;* Luo, Y.; Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 5689-5695 (2014).
-> Featured on the inside front cover of Advanced Materials.
84. Integration of Inorganic Semiconductor with MOF: A Platform for Enhanced Gaseous Photocatalytic Reactions PDF. Li, R.; Hu, J.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H. L.; Jiang, J.;* Zhang, Q.;* Xie, Y. and Xiong, Y.*, Adv. Mater. 26, 4783-4788 (2014).
-> Featured on the inside back cover of Advanced Materials.
83. Erythrocyte Membrane Is an Alternative Coating to Polyethylene Glycol for Prolonging the Circulation Lifetime of Gold Nanocages for Photothermal Therapy PDF.Piao, J. G.; Wang, L.; Gao, F.; You, Y. Z.*; Xiong, Y.* and Yang, L.*, ACS Nano 8, 10414-10425 (2014).
82. Two-Dimensional g-C3N4: An Ideal Platform for Examining Facet Selectivity of Metal Co-Catalysts in Photocatalysis PDF. Bai, S.; Wang, X.; Hu, C.; Xie, M.; Jiang, J.* and Xiong, Y.*, Chem. Commun. 50, 6094-6097 (2014).
-> Featured on the inside front cover of Chemical Communications.
81. Self-assembly of LaF3:Yb,Er/Tm Nanoplates into Colloidal Spheres and Tailoring Their Upconversion Emissions with Fluorescent Dyes. Bao, L.; You, H.; Wang, L.; Li, L.; Qiao, R.; Zhang, Y.; Zhong, Y.; Xiong, Y. and Li, Z.*, J. Mater. Chem. C 2, 8949-8955 (2014).
80. Solvothermal Synthesis of Ternary Cu2MoS4 Nanosheets: Structural Characterization at the Atomic Level
Chen, W.; Chen, H.; Zhu, H.; Gao, Q.; Luo, J.; Wang, Y.; Zhang, S.; Zhang, K.; Wang, C.; Xiong, Y.; Wu, Y.; Zheng, X.; Chu, W.; Song, L.* and Wu, Z.*, Small 10, 4637-4644 (2014).
2013
79. Surface Facet of Palladium Nanocrystals: a Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment PDF . Long, R.; Mao, K.; Ye, X.; Yan, W.; Huang, Y.; Wang, J.; Fu, Y.; Wang, X.; Wu, X.; Xie, Y. and Xiong, Y.*, J. Am. Chem. Soc. 135, 3200-3207 (2013).
-> Highlighted by the Chemical & Engineering News (CEN) on February 25, 2013.
78. A Unique Platinum-Graphene Hybrid Structure for High Activity and Durability in Oxygen Reduction Reaction PDF Wang, C.; Ma, L.; Liao, L.; Bai, S.; Long, R.; Zuo, M. and Xiong, Y.*, Sci. Rep. 3, 2580 (2013); DOI: 10.1038/srep02580.
77. Activation of Specific Sites on Cubic Nanocrystals: A New Pathway for Controlled Epitaxial Growth towards Catalytic Applications PDF .Bai, Y.; Long, R.; Wang, C.; Gong, M.; Li, Y.; Huang, H.; Xu, H.; Li, Z.; Deng, M. and Xiong, Y.*, J. Mater. Chem. A 1, 4228-4235 (2013).
-> Featured on the back cover of J. Mater. Chem. A.
76. The Role of Surface Chemistry on the Toxicity of Ag Nanoparticles PDF . Xiong, Y.;* Brunson, M.; Huh, J.; Huang, A.; Coster, A.; Wendt, K.; Fay, J. and Qin, D.*, Small 9, 2628-2638 (2013).
-> Selected as "Hot Topics: Surfaces and Interfaces" by Wiley-VCH.
75. Synthesis of Rhombic Hierarchical YF3 Nanocrystals and Their Use as Upconversion Photocatalysts after TiO2 Coating. Li, Z.;* Li, C.; Mei, Y.; Wang, L.; Du, G. and Xiong, Y.*, Nanoscale 5, 3030-3036 (2013).
74. Controlled Synthesis of Uniform LaF3 Polyhedrons, Nanorods and Nanoplates Using NaOH and Ligands. Bao, L.; Li, Z.;* Tao, Q.; Xie, J.; Mei, Y. and Xiong, Y.*, Nanotechnology 24, 145604 (2013).
73. Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Zhang, H.; Jin, M.; Xiong, Y.; Lim, B. and Xia, Y.*, Acc. Chem. Res. 46, 1783-1794 (2013).
2012
72. Control Over the Branched Structures of Platinum Nanocrystals for Electrocatalytic Applications PDF .Ma, L.; Wang, C.; Gong, M.; Liao, L.; Long, R.; Wang, J.; Wu, D.; Zhong, W.; Kim, M.;* Chen, Y.; Xie, Y. and Xiong, Y.*, ACS Nano 6, 9797-9806 (2012).
71. Investigation of Size-Dependent Plasmonic and Catalytic Properties of Metallic Nanocrystals Enabled by Size Control with HCl Oxidative Etching PDF.Li, B.; Long, L.; Zhong, X.; Bai, Y.; Zhu, Z.; Zhang, X.; Zhi, M.; He, J.; Wang, C.; Li, Z.-Y. and Xiong, Y.*, Small 8, 1710-1716 (2012).
70. Solar Energy Conversion with Tunable Plasmonic Nanostructures for Thermoelectric Devices PDF.Xiong, Y.*; Long, R.; Liu, D.; Zhong, X.; Wang, C.; Li, Z.-Y. and Xie, Y., Nanoscale 4, 4416-4420 (2012).
-> Featured on the inside front cover of Nanoscale.
69. Anisotropic Growth of Palladium Twinned Nanostructures Controlled by Kinetics and Their Unusual Activities in Galvanic Replacement PDF. Wang, C.; Wang, L.; Long, L.; Ma, L.; Wang, L.; Li, Z.* and Xiong, Y.*, J. Mater. Chem. 22, 8195-8198 (2012).
68. Identifying Structural Distortion in Doping VO2 with IR Spectroscopy. Long, R.; Qu, B.; Tan, R.; Sun, Y.; Tan, X.; Ying, W.; Pan, B.; Xiong, Y.* and Xie, Y.*, Phys. Chem. Chem. Phys. 14, 7225-7228 (2012).
67. Controlled Synthesis of Gd2(WO4)3 Microstructures and Their Tunable Photoluminescent Properties after Eu3+/Tb3+ Doping. Zeng, Y.; Li, Z.;* Wang, L. and Xiong, Y.*, Cryst. Eng. Comm. 14, 7043-7048 (2012).
66. Facile Synthesis of GdBO3 Spindle Assemblies and Microdisks as Versatile Host Matrixes for Lanthanides Doping. Li, Z.;* Zeng, Y.; Qian, H.; Long, R. and Xiong, Y.*, Cryst. Eng. Comm. 14, 3959-3964 (2012).
2011
65. Morphological Changes in Ag Nanocrystals Triggered by Citrate Photoreduction and Governed by Oxidative Etching PDF. Xiong, Y.* Chem. Commun. 47, 1580-1582 (2011).
64. Modification of NaYF4:Yb,Er@SiO2 Core-shell Nanoparticles with Gold Nanocrystals for Tunable Green-to-red Upconversion Emissions. Li, Z.;* Wang, L.; Wang, Z.; Liu, X. and Xiong, Y.*, J. Phys. Chem. C 115, 3291-3296 (2011).
2009
63. Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays PDF.Park, S.-I.; Xiong, Y. (Equal Contribution); Kim, R.-H.; Elvikis, P.; Meitl, M.; Kim, D.-H.; Wu, J.; Yoon, J.; Yu, C.-J.; Liu, Z.; Huang, Y.; Hwang, K.-C.; Ferreira, P.; Li, X.; Choquette K.; and Rogers, J.A.*, Science 325, 977-981 (2009).
-> Highlighted in ScienceNOW, 20 August 2009.
-> Highlighted in Chemical & Engineering News (C&EN), 24 August 2009.
-> Reported by The New York Times, ABC, BBC News, NBC, Reuters, US News and World Report, Discovery Channel, Discover Magazine, MIT Technology Review, Science Daily, Scientific American, Yahoo, CNet, Daily Tech, IT PRO, Nanowerk, newKerala, NewsFactor, NewsGuide.us, PhysOrg, R&D Magazine, ECNmag.com, Chemie.de, Daily India, Innovations Report, IT Web, Malaysia Sun, PC Magazine, Science Centric, The Engineer, Zimbabwe Star, Buenos Aires Herald, Herald de Paris, Infoworld, The Boston Globe, The Times of India, WNDU TV, Mother Nature Network, HDTV News, Rapid Electronics, IEEE Spectrum, Physics World, Live Science, Tech World, Sci-Tech Today, Photonics.com, PC World, Newsfactor.com, Nature, Optics and Photonics Focus, Inside Illinois.
62. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? PDF. Xia, Y.;* Xiong, Y.; Lim, B. and Skrabalak, S. E., Angew. Chem. Int. Ed. 48, 60-103 (2009).
-> Featured on the front cover of Angewandte Chemie.
-> Selected as the Most-Cited Paper by Thomson Reuters Essential Science Indicators, and featured
as a Fast Moving Front Paper on Science Watch.
-> Featured on the Wiley-VCH website as a 12/2008 Most-Accessed Article of Angewandte Chemie.
-> Featured on the Wiley-VCH website as a 11/2008-10/2009 Most-Accessed Article of Angewandte Chemie.
61. Omnidirectional Printing of Flexible, Spanning, and Stretchable Silver Microelectrodes. Ahn, B. Y.; Duoss, E. B.; Motala, M. J.; Guo, X.; Park, S. I.; Xiong, Y.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; and Lewis, J. A.*, Science 323, 1590-1593 (2009).
-> Highlighted in Science Perspectives, 20 March 2009.
-> Highlighted in Nature Materials, April 2009.
-> Highlighted in Science Daily, MIT Technology Review, MarketWatch, Product Design & Development, Science Centric, AZOmaterials, e! Science News, Nanotechnology Now, PhysOrg, The Post Chronicle, redOrbit, The Money Times, UPI.com, insciences.org, Times of the Internet.
2008
60. Adding new functions to organic semiconductor nanowires by assembling metal nanoparticles onto their surfaces.Briseno, A. L.; Mannsfeld, S. C. B.; Formo, E.; Xiong, Y.; Lu, X.; Bao, Z.; Jenekhe, S. A. and Xia, Y.*, J. Mater. Chem. 18, 5395-5398 (2008).
59. Cubic to Tetragonal Phase Transformation in Cold-Compressed Pd Nanocubes.Guo, Q.*; Zhao, Y.; Mao, W. L.; Wang, Z.; Xiong, Y. and Xia, Y., Nano Lett. 8, 972-975 (2008).
58. Polymer Induced Generation of Anatase TiO2 Hollow Nanostructures. Li, X.; Xiong, Y.; Zou, L.; Wang, M. and Xie, Y.*, Microporous Mesoporous Mater. 112, 641-646 (2008).
2007
57. Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods PDF
Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. and Xia, Y.*, J. Am. Chem. Soc. 127, 3665-3675 (2007).
-> Featured on the ACS website as one of the Most-Cited Articles published in JACS in 2007.
56. Trimeric Clusters of Silver in AgNO3 Aqueous Solutions and Their Role as Nuclei in Forming Triangular Nanoplates of Silver PDF.Xiong, Y.; Washio, I.; Chen, J.; Sadilek, M. and Xia, Y.*, Angew. Chem. Int. Ed. 46, 4917-4921 (2007).
55. Synthesis of Palladium Icosahedra with a Twinned Structure by Blocking Oxidative Etching with Citric Acid or Citrate Ion PDF.Xiong, Y.; McLellan, J. M.; Yin, Y. and Xia, Y.*, Angew. Chem. Int. Ed. 46, 790-794 (2007).
-> Selected as an Angewandte Chemie VIP Paper.
-> Featured on the inside cover of Angewandte Chemie.
54. Nanocrystals with Unconventional Shapes -- A Class of Promising Catalysts PDF.Xiong, Y.; Wiley, B. J. and Xia, Y.*, Angew. Chem. Int. Ed. 46, 7157-7159 (2007).
53. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Palladium PDF. Xiong, Y. and Xia, Y.*, Adv. Mater. 19, 3385-3391 (2007).
-> Selected as a 10/2007 most access article of Advanced Materials.
52. Synthesis of Silver Nanoplates at High Yields by Slowing Down the Polyol Reduction of Silver Nitrate with Polyacrylamide.Xiong, Y. (Equal Contribution); Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J. and Xia, Y.*, J. Mater. Chem. 17, 2600-2602 (2007).
-> Featured on the front cover of Journal of Materials Chemistry.
51. Synthesis and Characterization of Fivefold Twinned Nanorods and Right Bipyramids of Palladium. Xiong, Y.; Cai, H.; Yin, Y. and Xia, Y.*, Chem. Phys. Lett. 440, 273-278 (2007).
50. Facile Synthesis of Tadpole-Like Nanostructures Consisting of Au Heads and Pd Tails.Camargo, P. H. C.; Xiong, Y.; Ji, L.; Zuo, J. M. and Xia, Y.*, J. Am. Chem. Soc. 127, 15452-15453 (2007).
49. Water-Based Synthesis of Pd Nanocrystals with an Octahedral, Decahedral, or Icosahedral Shape. Lim, B.; Xiong, Y. and Xia, Y.*, Angew. Chem. Int. Ed. 46, 9279-9282 (2007).
48. Perylenediimide Nanowires and Their Use in Fabricating Field-Effect Transistors and Complementary Inverters.Briseno, A. L.; Mannsfeld, S. C. B.; Reese, C.; Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z. and Xia, Y.*, Nano Lett. 7, 2847-2853 (2007).
-> Highlighted in EE Times in October 2007.
47. Synthesis and Optical Properties of Silver Nanobars
Wiley, B. J.; Chen, Y.; McLellan, J.; Xiong, Y.; Li, Z.-Y.; Ginger, D. S. and Xia, Y.*, Nano Lett. 7, 1032-1036 (2007).
-> Highlighted in Photonics Spectra, 2007, May, p. 84.
-> Featured on the ACS website as a 2007 Most-Access Article of Nano Letters.
46. Fabrication of Field-Effect Transistors from Hexathiapentacene Single-Crystal Nanowires.Briseno, A. L.; Mannsfeld, S. C. B.; Lu, X.; Xiong, Y.; Jenekhe, S. A.; Bao, Z. and Xia, Y.*, Nano Lett. 7, 668-675 (2007).
-> Highlighted in Nano Today 2, 9 (2007).
2006
45. Poly(vinyl pyrrolidone): A Dual Functional Reductant and Stabilizer for the Facile Synthesis of Metal Nanoplates in Aqueous Solutions.Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.-Y. and Xia, Y.*, Langmuir 22, 8563-8570 (2006).
-> Selected as a July-September 2006 most access article of Langmuir.
44. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface .Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y. and Xia, Y.*, J. Am. Chem. Soc. 128, 14776-14777 (2006).
-> Selected as an October-December 2006 most access article of Journal of the American Chemical Society.
43. Surfactant-Directed Assembly of Pt Nanoparticles into Colloidal Spheres and Their Use as Substrates in Forming Pt Nanorods and Nanowires.Chen, J.; Xiong, Y.; Yin, Y. and Xia, Y.*, Small 2, 1340-1343 (2006).
->Selected as a 5/2006-4/2007 most access article of Small.
42. Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates .Washio, I.; Xiong, Y.; Yin, Y. and Xia, Y.*, Adv. Mater. 18, 1745-1749 (2006).
41. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds.Wiley, B. J.; Xiong, Y.; Li, Z.-Y.; Yin, Y. and Xia, Y.*, Nano Lett. 6, 765-768 (2006).
40. Surface-Enhanced Raman Scattering of 4-Mercaptopyridine on Thin Films of Nanoscale Pd Cubes, Boxes, and Cages.McLellan, J. M.; Xiong, Y.; Hu, M. and Xia, Y.*, Chem. Phys. Lett. 417, 230-234 (2006).
39. Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres. Li, X.; Xiong, Y.; Li, Z. and Xie, Y.*, Inorg. Chem. 45, 3493-3495 (2006).
-> Selected as an April-June 2006 most access article of Inorganic Chemistry.
38. Solution-Phase Template Approach for the Synthesis of Cu2S Nanoribbons. Li, Z.; Yang, H.; Ding, Y.; Xiong, Y. and Xie, Y.*, Dalton Trans. 149-151 (2006).
2005
37. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Pd and Their SPR/SERS Properties PDF.Xiong, Y.; McLellan, J. M.; Chen, J.; Yin, Y.; Li, Z.-Y. and Xia, Y.*, J. Am. Chem. Soc. 127, 17118-17127 (2005).
36. Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size PDF.Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.*; Aloni, S. and Yin, Y., J. Am. Chem. Soc. 127, 7332-7333 (2005).
35. Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties PDF.Xiong, Y.; Wiley, B.; Chen, J.; Li, Z.-Y.; Yin, Y. and Xia, Y.*, Angew. Chem. Int. Ed. 44, 7913-7917 (2005).
-> Selected as a Hot Paper of Angewandte Chemie.
34. Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process PDF.Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.*; Yin, Y. and Li, Z.-Y., Nano Lett. 5, 1237-1242 (2005).
33. Some Recent Developments in the Chemical Synthesis of Inorganic Nanotubes
Xiong, Y.; Mayers, B. T. and Xia, Y.*, Chem. Commun. 5013-5022 (2005).
32. Synthesis of Smooth and Bamboo-like Well-Crystalline CNx Nanotubes with Controllable Nitrogen Concentration (x = 0.05-1.02).Xiong, Y.; Li, Z.; Quo, Q. and Xie, Y.*, Inorg. Chem. 44, 6506-6508 (2005).
31. Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Chen, J.; Wiley, B.; McLellan, J. M.; Xiong, Y.; Li, Z.-Y. and Xia, Y.*, Nano Lett. 5, 2058-2062 (2005).
-> Selected as an October-December 2005 most access article of Nano Letters.
30. Selective Growth of ZnO Nanostructures with Coordination Polymers .Li, Z.; Xiong, Y. and Xie, Y.*, Nanotechnology 16, 2303-2308 (2005).
29. Rational Growth of Various alpha-MnO2 Hierarchical Structures and beta-MnO2 Nanorods via Homogenous Catalytic Route. Li, Z.; Ding, Y.; Xiong, Y. and Xie, Y.*, Crys. Growth Degn. 5, 1953-1958 (2005).
28. One-Step Solution-Based Catalytic Route to Fabricate Novel alpha-MnO2 Hierarchical Structures on a Large Scale.Li, Z.; Ding, Y.; Xiong, Y.; Yang, Q. and Xie, Y.*, Chem. Comm. 918-920 (2005).
2004
27. Aqueous-Solution Growth of GaP and InP Nanowires: A General Route to Phosphide, Oxide, Sulfide and Tungstate Nanowires.Xiong, Y.; Xie, Y.*; Li, Z.; Li, X. and Gao, S., Chem. Eur. J. 10, 654-660 (2004).
26. Thermally Stable Hematite Hollow Nanowires Xiong, Y.; Li, Z.; Li, X.; Hu, B. and Xie, Y.*, Inorg. Chem. 43, 6540-6542 (2004).
25. Production of Novel Amorphous Carbon Nanostructures from Ferrocene in Low-Temperature Solution.Xiong, Y.; Xie, Y.*; Li, X. and Li, Z., Carbon 42, 1447-1453 (2004).
24. Aqueous Synthesis of Group IIIA Nitrides at Low Temperature .Xiong, Y.; Xie, Y.*; Li, Z.; Li, X. and Zhang, R., New J. Chem. 28, 214-217 (2004).
23. Room-Temperature Surface-Erosion Route to ZnO Nanorod Arrays and Urchin-like Assemblies. Li, Z.; Ding, Y.; Xiong, Y.; Yang, Q. and Xie, Y.*, Chem. Eur. J. 10, 5823-5828 (2004).
22. Structure-Direct Assembling of Hexagonal Pencil-Like ZnO Group Whiskers. Hou, H.; Xiong, Y.; Xie, Y.*; Li, Q.; Zhang, J. and Tian, X., J. Solid State Chem. 177, 176-180 (2004).
2003
21. Fabrication of Self-Supported Patterns of Aligned beta-FeOOH Nanowires via a Low-Temperature Solution Reaction.Xiong, Y.; Xie, Y.*; Chen, S. and Li, Z., Chem. Eur. J. 9, 4991-4996 (2003).
20. Formation of Silver Nanowires Through a Sandwich Reduction Process.Xiong, Y.; Xie, Y.*; Wu, C.; Yang, J.; Li, Z. and Xu, F., Adv. Mater. 15, 405-408 (2003).
19. Growth of Well-Aligned gamma-MnO2 Monocrystalline Nanowires through a Coordination-Polymer-Precursor Route.Xiong, Y.; Xie, Y.*; Li, Z. and Wu, C., Chem. Eur. J. 9, 1645-1651 (2003).
18. From Complex Chains to 1D Metal Oxides: A Novel Strategy to Cu2O Nanowires.Xiong, Y.; Li, Z.; Zhang, R.; Xie, Y.*; Yang, J. and Wu, C., J. Phys. Chem. B 107, 3697-3702 (2003).
17. A Novel Approach to Carbon Hollow Spheres and Vessels from CCl4 at Low Temperatures.Xiong, Y.; Xie, Y.*; Li, Z.; Wu, C. and Zhang, R., Chem. Commun. 904-905 (2003).
-> Selected as a TOP 10 hot paper of Chemical Communications.
16. Complexing-Reagent Assisted Synthesis of alpha-Fe and gamma-Fe2O3 Nanowires under Mild Conditions .Xiong, Y.; Xie, Y.*; Li, Z.; Zhang, R.; Yang, J. and Wu, C., New J. Chem. 27, 588-590 (2003).
15. Micelle-Assisted Fabrication of Necklace-Shaped Assembly of Inorganic Fullerene-like Molybdenum Disulfide Nanospheres.Xiong, Y.; Xie, Y.*; Li, Z.; Li, X. and Zhang, R., Chem. Phys. Lett. 382, 180-185 (2003).
14. Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-assisted Route.Li, Z.; Xiong, Y. and Xie, Y.*, Inorg. Chem. 42, 8105-8109 (2003).
13. A Novel Non-Template Solution Approach to Fabricate ZnO Hollow Spheres with a Coordination Polymer as a Reactant.Li, Z.; Xie, Y.*; Xiong, Y. and Zhang, R., New J .Chem. 27, 1518-1521 (2003).
12. Reverse Micelle-Assisted Route to Control Diameters of ZnO Nanorods by Selecting Different Precursors.Li, Z.; Xie, Y.*; Xiong, Y.; Zhang, R. and He, W., Chem. Lett. 32, 760-761 (2003).
2002
11. From 2D Framework to Quasi-1D Nanomaterial: Preparation, Characterization and Formation Mechanism of Cu3SnS4 Nanorods.Xiong, Y.; Xie, Y.*; Du, G. and Su, H., Inorg. Chem. 41, 2953-2959 (2002).
10. In situ Micelle-Template-Interface Reaction Route to CdS Nanotubes and Nanowires.Xiong, Y.; Xie, Y.*; Yang, J.; Zhang, R.; Wu, C. and Du, G., J. Mater. Chem. 12, 3712-3716 (2002).
-> Selected as a TOP 10 most accessed article of Journal of Materials Chemistry.
9. A Solvent-Reduction and Surface-Modification Technique to Morphology Control of Tetragonal In2S3 Nanocrystals.Xiong, Y.; Xie, Y.*; Du, G. and Tian, X., J. Mater. Chem. 12, 98-102 (2002).
8. Ultrasound-Assisted Self-Regulation Route to Ag Nanorods.Xiong, Y.; Xie, Y.*; Du, G.; Liu, X. and Tian, X., Chem. Lett. 98-99 (2002).
7. A Novel in Situ Oxidization-Sulfidation Growth Route via A Self-Purification Process to beta-In2S3 Dendrites.Xiong, Y.; Xie, Y.*; Du, G.; Tian, X. and Qian, Y., J. Solid State Chem. 166, 336-340 (2002).
6. Synthesis of Rod-, Twinrod-, and Tetrapod-Shaped CdS Nanocrystals Using a Highly Oriented Solvothermal Recrystallization Technique. Chen, M.; Xie, Y.*; Lu, J.; Xiong, Y.; Zhang, S.; Qian, Y. and Liu, X., J. Mater. Chem. 12, 748-753 (2002).
2000-2001
5. Sonochemical Coreduction Route to Single-Crystalline InSb Dendrites.Xiong, Y.; Xie, Y.*; Du, G.; Liu, X. and Tian, X., Chem. Lett. 1038-1039 (2001).
4. A Mild Solvothermal Route to Chalcopyrite Quaternary Semiconductor CuIn(SexS1-x)2 Nanocrystallites. Xiao, J.; Xie, Y.*; Xiong, Y.; Tang, R. and Qian, Y., J. Mater. Chem. 11, 1417-1420 (2001).
3. Synthesis of MS/TiO2 (M=Pb,Zn,Cd) Nanocomposites through a Mild Sol-Gel Process. Su, H.; Xie, Y.*; Gao, P.; Xiong, Y. and Qian, Y., J. Mater. Chem. 11, 684-686 (2001).
2. Preparation and Morphology Control of Rod-like Nanocrystalline Tin Sulfides via a Simple Ethanol Thermal Route.Su, H.; Xie, Y.*; Xiong, Y.; Gao, P. and Qian, Y., J. Solid State Chem. 161, 190-196 (2001).
1. Synthesis and Formation Mechanism of Bi(Se,S) Nanowires via a Solvothermal Template Process. Su, H.; Xie, Y.*; Gao, P.; Lu, H.; Xiong, Y. and Qian, Y., Chem. Lett. 790-791 (2000).
中文論文:
5. 一步法合成的Pd凹面立方體及其電催化甲酸氧化性質(zhì)研究.饒州鋁, 龍冉,* 熊宇杰,* 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào) (正在出版).
4. 以催化功能優(yōu)化為導(dǎo)向的無機(jī)復(fù)合結(jié)構(gòu)表界面和電子態(tài)調(diào)控.龍冉, 李睿, 熊宇杰,* 化學(xué)通報(bào)78, 580-589 (2015) (2013年度中國化學(xué)會(huì)青年化學(xué)獎(jiǎng)邀請(qǐng)綜述).
3. 金屬納米結(jié)構(gòu)的氧化刻蝕調(diào)控與催化性能優(yōu)化.王成名,* 鐘瑋, 廖玲文, 熊宇杰,* 中國科學(xué) 化學(xué) (中國科學(xué)B輯) 43, 1614-1629 (2013) (邀請(qǐng)專題論述).
-> 選為“當(dāng)期熱點(diǎn)論文”.
2. 鈀納米晶體在電催化甲酸氧化反應(yīng)中的形貌效應(yīng).王成名, 柏彧, 王利利, 龍冉, 劉東, 鄧明森, 熊宇杰,* 中國科學(xué) 化學(xué) (中國科學(xué)B輯) 43, 744-753 (2013) (邀請(qǐng)論文).
1. 以催化活性調(diào)控為導(dǎo)向的金屬納米結(jié)構(gòu)可控合成.柏彧, 龍冉, 王成名, 熊宇杰,* 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào) 43, 889-898 (2013) (特約評(píng)述).
榮譽(yù)獎(jiǎng)勵(lì):
1、2015年獲Elsevier中國高被引學(xué)者(化學(xué))。
2、2015年獲中國科學(xué)院優(yōu)秀導(dǎo)師獎(jiǎng)。
3、2015年獲第八屆安徽省自然科學(xué)優(yōu)秀學(xué)術(shù)論文一等獎(jiǎng)。
4、2015 Nanoscience Research Leader Award (Cognizure Publisher)。
5、2015年獲CAPA Biomatik Distinguished Faculty Award (Chinese-American Chemistry & Chemical Biology Professors Association, CAPA)。
6、2015年獲“最美青年科技工作者”稱號(hào)(共青團(tuán)中央、全國青年聯(lián)合會(huì)、中國青年科技工作者協(xié)會(huì)和中國青年報(bào)社)。
7、2014年獲Elsevier中國高被引學(xué)者(化學(xué))。
8、2014年獲中國科學(xué)院優(yōu)秀導(dǎo)師獎(jiǎng)。
9、2014年獲香港求是科技基金會(huì)杰出青年學(xué)者獎(jiǎng)。
10、2014年獲中國科大校友基金會(huì)青年教師事業(yè)獎(jiǎng)。
11、2014年獲首屆中國化學(xué)會(huì)納米化學(xué)新銳獎(jiǎng)(Small期刊和中國化學(xué)會(huì)納米化學(xué)專業(yè)委員會(huì))。
12、2014年獲中國科學(xué)技術(shù)大學(xué)“優(yōu)秀研究生導(dǎo)師”榮譽(yù)稱號(hào)。
13、2013年獲中國化學(xué)會(huì)青年化學(xué)獎(jiǎng)。
14、2012年獲國家自然科學(xué)二等獎(jiǎng)(第三完成人)。
15、2012年獲第三屆Scopus青年科學(xué)之星銅獎(jiǎng)(材料科學(xué))。
16、2012年獲第十三屆霍英東青年教師基金獲得者(基礎(chǔ)性研究)。
17、2011年首批國家“青年千人計(jì)劃”入選者。
18、2011年中國科學(xué)院“百人計(jì)劃”引進(jìn)人才。
19、2006年獲全國百篇優(yōu)秀博士學(xué)位論文提名獎(jiǎng)。
20、2006年獲中國科學(xué)院優(yōu)秀博士學(xué)位論文獎(jiǎng)。
21、2004年獲中國科學(xué)院院長優(yōu)秀獎(jiǎng)。
22、2003年獲香港求是科技基金會(huì)研究生獎(jiǎng)。
學(xué)術(shù)交流與報(bào)告:
國際交流:
1. (invited) “Surface and Interface Design for Surface Plasmon-Mediated Catalysis", Materials Research Society (MRS) Fall Meeting, Boston, MA, USA, November 29-December 4, 2015.
2. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", 6th International Conference on Nanoscience & Technology (ChinaNANO 2015), Beijing, China, September 3-5, 2015.
3. (keynote) "Surface and Interface Modulation for Tuning Electrocatalytic Performance of Metal Nanocrystals", 2nd International Conference on Electrochemical Energy Science and Technology (EEST2015), Vancouver, BC, Canada, August 16-22, 2015.
4. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", SPIE Optics and Photonics 2015, San Diego, CA, USA, August 9-13, 2015
5. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", 5th Molecular Materials Meeting M3@Singapore, Singapore, August 3-5, 2015.
6. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", Third China-Japan Joint Symposium on Inorganic and Nanomaterial Science, Beijing, China, June 5-7, 2015.
7. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", 1st International Workshop on Engineering and Applications of Nanocarbon Materials, Jinan, China, February 1-2, 2015.
8. (invited) "Boosting the Photocatalytic Efficiency of Semiconductor via Design of Charge-Transfer Hybrid Structures", 2014 Energy Materials Nanotechnology (EMN) Fall Meeting, Orlando, FL, USA, November 22-25, 2014.
9. (invited) "Surface and Interface Modulation for Tuning Electrocatalytic Performance of Metal Nanocrystals", 1st International Conference on Electrochemical Energy Science and Technology (EEST2014), Shanghai, China, November 1-4, 2014.
10. (invited) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", Second International Conference of Young Researchers on Advanced Materials (IUMRS-ICYRAM 2014), Haikou, China, October 25-28, 2014.
11. (invited) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", 4th Young Scholars Symposium on Nano & New Energy Technology, Shanghai, China, August 8-9, 2014.
12. (plenary) "Design of Inorganic Hybrid Structures for Photocatalytic Energy Conversion", 2014 International Nanophotonics and Nanoenergy Conference, Seoul, Korea, July 1-3, 2014.
13. (keynote) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", 2013 International Conference for Leading and Young Materials Scientists (IC-LYMS 2013), Asia Pacific Society for Materials Research (APSMR), Sanya, China, December 23-26, 2013.
14. (invited) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA, December 6, 2013.
15. “Design of Hybrid Structures for Photocatalytic Carbon Dioxide Conversion", Materials Research Society (MRS) Fall Meeting, Boston, MA, USA, December 1-6, 2013.
16. (keynote) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", IUPAC 9th International Conference on Novel Materials and Synthesis (NMS-IX) & 23rd International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXIII), International Union of Pure and Applied Chemistry (IUPAC), Shanghai, China, October 17-22, 2013.
17. (invited) "Addressing the Energy and Environmental Challenges by Designing Catalytic Materials", CHInano 2013 Conference & Expo, Nanotechnologies for Energy and Clean Tech, Suzhou, China, September 25-26.
18. (invited) "Inorganic Nanocrystals with Well-Defined Surface and Interface for Catalysis with Improved Activity and Durability", International Conference on Advanced Materials (ICAM 2013), International Union of Materials Research Societies (IUMRS), Qingdao, China, September 22-28, 2013.
19. (invited) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", Stanford-USTC-MIT (SUM) 2013 Chemistry & Materials Science Workshop, Hefei, China, September 17-18, 2013.
20. (invited) "Metallic Nanocrystals: Sensing/Therapy Applications and Toxicity Implications", International Conference on Materials for Advanced Technologies (ICMAT), Materials Research Society of Singapore (MRS-S), Singapore, June 30-July 5, 2013.
21. (invited) "Surface and Interface Modulation for Tuning Catalytic Performance of Inorganic Nanocrystals", IMS Asian International Symposium “Coordination Chemistry toward Supramolecular Materials”, Institute for Molecular Science, Okazaki, Japan, June 14-15, 2013.
22. (plenary) "Controlled Synthesis of Metal Nanocrystals: A Platform for Exploring Applications in Energy Conversion", 2013 International Nanophotonics and Nanoenergy Conference, Hefei, China, May 20-23, 2013.
23. (invited) “Controlled Synthesis of Metal Nanocrystals: A Platform for Exploring Catalytic and Plasmonic Applications”, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA, April 11, 2013.
24. “Facet Control of Pd Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen”, American Chemical Society (ACS) 245th National Meeting, New Orleans, LA, USA, April 7-11, 2013.
25. (keynote) "Controlled Synthesis of Noble Metal Nanocrystals for Tunable Catalytic and Plasmonic Properties", IUPAC 8th International Conference on Novel Materials and Synthesis (NMS-VIII) & 22nd International Symposium on Fine Chemistry and Functional Polymers (FCFP-XXII), International Union of Pure and Applied Chemistry (IUPAC), Xi’An, China, October 14-19, 2012.
26. "Controlled Synthesis of Pd and Pt Nanocrystals for Catalysis with Improved Activity and Selectivity", American Chemical Society (ACS) 243rd National Meeting, San Diego, CA, USA, March 25-29, 2012.
27. “Controlling and Preserving the Shape of Metallic Nanocrystals for Sustainable Applications”, Materials Research Society (MRS) Fall Meeting, Boston, MA, USA, November 28-December 2, 2011.
28. “Examining the Effect of Surface Chemistry on the Toxicity of Silver Nanoparticles”, Materials Research Society (MRS) Fall Meeting, Boston, MA, USA, November 28-December 2, 2011.
29. (invited) “Engineering Inorganic Materials into Functional Structures”, NanoScience Technology Center, University of Central Florida, Orlando, FL, USA, January 24, 2011.
30. (invited) “Tailoring Inorganic Materials into Functional Structures”, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA, December 6, 2011.
31. (invited) “Engineering Inorganic Materials into Functional Structures”, Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA, November 18, 2010.
32. (invited) “Tailoring Inorganic Materials into Functional Structures”, Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA, November 16, 2010.
33. (invited) “Engineering Inorganic Materials into Functional Structures”, Nano Terra Inc., Boston, MA, USA, October 23, 2009.
34. (invited) “Metallic Nanostructures for Toxicity Study”,1st Symposium on Nanotechnology for Public Health, Environment, and Energy, Washington University in St. Louis, St. Louis, MO, USA, September 24-25, 2009.
35. (invited) “Engineering Inorganic Materials into Functional Structures”, Department of Materials Engineering, University of Wisconsin, Milwaukee, WI, USA, November 19, 2008.
36. (invited) “Template-Directed Growth of Nanomaterials”, 4th Annual Conference on Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO07), Snowbird, UT, USA, April 18-21, 2007.
37. “Kinetically Controlled Synthesis of Pd Nanoplates and Nanorods: Two Anisotropic Shapes with Tunable Plasmonic Properties”, Materials Research Society (MRS) Spring Meeting, San Francisco, CA, USA, April 9-13, 2007.
38 “Engineering the Plasmonic Properties of Pd Nanostructures for SERS Detection”, Materials Research Society (MRS) Spring Meeting, San Francisco, CA, USA, April 9-13, 2007.
39. “Pd Nanostructures with Well-Controlled Shape and Properties”, American Chemical Society (ACS) 233rd National Meeting, Chicago, IL, USA, March 25-29, 2007.
40. “Shape-Controlled Synthesis of Pd Nanostructures”, American Chemical Society (ACS) 233rd National Meeting, Chicago, IL, USA, March 25-29, 2007.
41. “Shape-Controlled Synthesis of Pd Nanostructures and Their Surface Plasmonic Properties”, American Chemical Society (ACS) 232nd National Meeting, San Francisco, CA, USA, September 10-14, 2006.
國內(nèi)會(huì)議:
1. “應(yīng)用于光催化能量轉(zhuǎn)換的無機(jī)復(fù)合結(jié)構(gòu)設(shè)計(jì)”,中國化學(xué)會(huì)第八屆全國環(huán)境化學(xué)大會(huì),廣東廣州,邀請(qǐng)主題報(bào)告,2015年11月5-8日
2. “應(yīng)用于光催化能量轉(zhuǎn)換的無機(jī)復(fù)合結(jié)構(gòu)設(shè)計(jì)”,2015年中國光催化論壇及產(chǎn)業(yè)大會(huì),四川成都,邀請(qǐng)報(bào)告,2015年7月29-31日
3. “催化材料表界面調(diào)控與精準(zhǔn)制備”,第十五屆全國青年催化學(xué)術(shù)會(huì)議,安徽合肥,邀請(qǐng)主題報(bào)告,2015年7月20-23日
4. “以催化功能優(yōu)化為導(dǎo)向的無機(jī)復(fù)合結(jié)構(gòu)表界面調(diào)控”,中國科協(xié)第282次青年科學(xué)家論壇:化學(xué)與生物和能源的交叉與融合學(xué)術(shù)會(huì)議,甘肅蘭州,邀請(qǐng)報(bào)告,2014年8月22-24日
5. “基于電子-空穴分離的復(fù)合光催化材料設(shè)計(jì)”,第五屆全國摻雜納米材料發(fā)光性質(zhì)學(xué)術(shù)會(huì)議,黑龍江哈爾濱,分會(huì)邀請(qǐng)報(bào)告,2014年8月11-13日
6. “以催化性能調(diào)控為導(dǎo)向的無機(jī)納米晶體表界面設(shè)計(jì)”,中國化學(xué)會(huì)第二十九屆學(xué)術(shù)年會(huì),北京,分會(huì)邀請(qǐng)報(bào)告,2014年8月4-7日
7. "Control over the Structures of Noble Metal Nanocrystals for Tunable Catalytic and Plasmonic Properties",第六屆全國結(jié)構(gòu)化學(xué)會(huì)議,江蘇蘇州,分會(huì)邀請(qǐng)報(bào)告,2012年10月23-25日
8. “金屬納米結(jié)構(gòu)的可控合成與表面等離子體激元調(diào)控”,第四屆全國摻雜納米材料發(fā)光性質(zhì)學(xué)術(shù)會(huì)議,內(nèi)蒙古呼和浩特,分會(huì)邀請(qǐng)報(bào)告,2012年8月2-6日
9. “貴金屬納米結(jié)構(gòu)的可控合成與催化及表面等離子體性能調(diào)控”,第十二屆固體化學(xué)與無機(jī)合成學(xué)術(shù)會(huì)議,山東青島,2012年6月29日-7月1日
10. “貴金屬納米結(jié)構(gòu)的可控合成與催化性能調(diào)控”,中國化學(xué)會(huì)第二十八屆學(xué)術(shù)年會(huì),四川成都,分會(huì)邀請(qǐng)報(bào)告,2012年4月12-15日
中學(xué)生科普?qǐng)?bào)告:
“美麗的化學(xué)邂逅深?yuàn)W的物理:走進(jìn)神奇的納米材料世界”,曾在安徽省淮北一中、黑龍江省大慶實(shí)驗(yàn)中學(xué)和鐵人中學(xué)、福建省泉州五中、泉州七中、泉州十一中和季延中學(xué)等校講授
熊宇杰:中科大人的執(zhí)著和堅(jiān)守
提要: “許多人都問過我,從事科研工作這么辛苦,你為何覺得有意思?我始終覺得關(guān)鍵在于興趣。”
“許多人都問過我,從事科研工作這么辛苦,你為何覺得有意思?我始終覺得關(guān)鍵在于興趣。少年班這種特殊的培養(yǎng)方式讓我找到了從事科學(xué)研究的興趣。”熊宇杰,這位從中科大少年班走出來的青年科學(xué)家,在談及自己的母校時(shí),難掩自豪之情。
熊宇杰是國家首批“青年千人計(jì)劃”專家,中國科學(xué)技術(shù)大學(xué)教授、博導(dǎo),1996年,年僅17歲的熊宇杰被保送進(jìn)入中科大少年班學(xué)習(xí)。中科大少年班自誕生以來就充滿傳奇色彩,在中國教育界,從來沒有哪個(gè)班級(jí)像中科大少年班這樣飽受爭(zhēng)議。30年來,少年班在“爭(zhēng)議中前行”,從少年班走出來了1000多名學(xué)生,其中91%的畢業(yè)生獲得了博士碩士學(xué)位。2015年,96級(jí)少年班成員尹希晉升為哈佛大學(xué)正教授,未滿32歲,打破了他的師姐莊小威(87級(jí)少年班)創(chuàng)下的“34歲出任哈佛大學(xué)正教授”記錄。
在熊宇杰身上,少年班的印跡一直都存在。在少年班養(yǎng)成的對(duì)于科學(xué)的好奇和愛好,對(duì)他后來的科研生涯產(chǎn)生了潛移默化的影響。今年,熊宇杰取得多項(xiàng)重大突破,并獲得全國首屆“最美科技工作者”稱號(hào)和美國華人化學(xué)與化學(xué)生物學(xué)教授協(xié)會(huì)“Biomatik 杰出教授獎(jiǎng)”,彰顯出青年科學(xué)家的卓然風(fēng)采。
“少年班讓我找到了興趣所在”
1996年,年僅17歲的熊宇杰被保送進(jìn)入中科大教改試點(diǎn)班(又稱“00班”)學(xué)習(xí)。“00班創(chuàng)辦于1985年,與1978年成立的少年班同屬少年班學(xué)院。我在少年班學(xué)院低年級(jí)的數(shù)學(xué)和物理課程都是和相應(yīng)專業(yè)院系一起學(xué)習(xí)的,這為我目前的處于化學(xué)、物理和材料的交叉領(lǐng)域研究打下了堅(jiān)實(shí)的基礎(chǔ)。”
在中科大的8年時(shí)間里,熊宇杰從無數(shù)的選擇中找到的自己的興趣所在——化學(xué),從那之后直到現(xiàn)在,他一直保持著對(duì)化學(xué)的好奇、熱愛和堅(jiān)持,興趣是促使他不斷創(chuàng)新的源泉和動(dòng)力。2004年,熊宇杰從中科大博士畢業(yè)后赴美繼續(xù)博士后研究。2009年,熊宇杰加入華盛頓大學(xué)圣路易斯分校,擔(dān)任國家納米技術(shù)基礎(chǔ)設(shè)施組織首席研究員兼納米中心管理主任。出任該職位時(shí),熊宇杰剛剛踏過而立之年的門檻。他坦言,華盛頓大學(xué)工作的2年多時(shí)間對(duì)他后來的研究工作影響顯著,“我當(dāng)時(shí)的工作中包含了兩項(xiàng)重要的工作內(nèi)容:在各種課題中準(zhǔn)確找到其關(guān)鍵科學(xué)問題;和不同領(lǐng)域的科研人員商談可能的合作。我在這兩項(xiàng)工作中得到了很多體會(huì)和經(jīng)驗(yàn),對(duì)于我后來的研究工作中的課題制定以及交叉合作等方面很有幫助。”
即便在美國的生活已經(jīng)順風(fēng)順?biāo)苡罱苁冀K沒有體會(huì)到“家”的感覺。2010年,離開故土6年后,熊宇杰回國訪問,這一次回國之行給他留下了深刻的印象,“我沒想到短短幾年間,國家發(fā)展得如此迅速,我覺得自己應(yīng)該回國組建自己的科研團(tuán)隊(duì),否則余生將留下無法彌補(bǔ)的遺憾。”他坦言,歸屬感是觸動(dòng)其回國的一個(gè)很重要的原因, 2010年底啟動(dòng)的“青年千人計(jì)劃”更是為他提供了一個(gè)順理成章的理由,于是他開始聯(lián)系母校中國科技大學(xué),在一切都準(zhǔn)備就緒之后,熊宇杰攜妻兒動(dòng)身回國。
“三位一體”合作迸發(fā)出思想火花
2011年3月,熊宇杰到中科大報(bào)到,隨即著手組建實(shí)驗(yàn)室和研究組,短短半年多時(shí)間內(nèi),一個(gè)簡(jiǎn)單的材料合成實(shí)驗(yàn)室初步建成。“在實(shí)驗(yàn)室建設(shè)和課題開展的過程中,我始終堅(jiān)持沿著‘從簡(jiǎn)到繁、不一蹴而就’的思路,有了自己的實(shí)驗(yàn)室并初步確定研究方向之后,相應(yīng)的進(jìn)展就會(huì)適當(dāng)?shù)丶涌欤壳拔覀儓F(tuán)隊(duì)除了眾多研究生外,還有3名博士后,這顯然是在起步階段較難做到的。”
在之后的一年多時(shí)間里,熊宇杰不斷思考如何根據(jù)自己獨(dú)特的學(xué)術(shù)背景形成有特色的研究方向,他的研究方向也從最初的貴金屬納米結(jié)構(gòu)合成發(fā)展到了目前的材料表界面調(diào)控。由于復(fù)合材料體系尤其是光催化體系相當(dāng)復(fù)雜,要闡明其中的機(jī)制性問題需要通過不同學(xué)科的交叉與合作。因此,他開始和中科大的其他青年教授展開合作,并開創(chuàng)了“精準(zhǔn)制備-理論模擬-先進(jìn)表征”三位一體的交叉合作模式。
“平時(shí)我和江俊、張群、武曉君、宋禮等校內(nèi)的年輕老師交往較多,江俊和武曉君擅長理論模擬,張群等擅長微觀過程的先進(jìn)表征。我們常在用餐或業(yè)余時(shí)間聊天,擦出‘思想火花’。基于這些想法以及我自己在無機(jī)材料設(shè)計(jì)與可控合成方面的優(yōu)勢(shì),通過課題合作的形式自然形成了跨越多個(gè)學(xué)科的合作團(tuán)隊(duì)。我們這些青年教授通過多學(xué)科的交叉合作,得以實(shí)現(xiàn)了材料合成、理論模擬和原位表征的‘三位一體’模式,對(duì)無機(jī)復(fù)合材料體系的構(gòu)筑原理開展系統(tǒng)而深入的研究工作。正所謂‘1 + 1 > 2’,不同學(xué)科的交叉與合作使得我們可以在特定科學(xué)問題上進(jìn)行深入探討。通過尋找貌似不太相同的課題之間的相同點(diǎn),也會(huì)產(chǎn)生更多的新奇想法。”
經(jīng)過研究團(tuán)隊(duì)成員共同的不懈努力和交叉合作,在過去兩年,熊宇杰帶領(lǐng)其團(tuán)隊(duì)取得了不少進(jìn)展,《美國化學(xué)會(huì)志》、《德國應(yīng)用化學(xué)》和《先進(jìn)材料》等重要化學(xué)與材料國際期刊上報(bào)道了他們的系列科研成果,今年以來更是在太陽能轉(zhuǎn)化技術(shù)、面向燃料電池應(yīng)用的催化材料設(shè)計(jì)以及新型復(fù)合光催化劑上取得重大突破。
科研工作者并非“苦行僧”
在歸國的短短4年時(shí)間里,熊宇杰從零開始,組建實(shí)驗(yàn)室、招收研究生、選擇自己喜歡的課題努力深耕,在科研上連連取得突破,2015年更是交出了一份令人滿意的答卷。他坦言,這些成果的取得離不開對(duì)化學(xué)的熱愛,作為一名青年科學(xué)家,他認(rèn)為自己同樣有義務(wù)和責(zé)任把這份熱情傳遞給每一位青年學(xué)子,讓更多的人燃起對(duì)科學(xué)的熱愛。
這一點(diǎn)充分體現(xiàn)在熊宇杰對(duì)于學(xué)生的培養(yǎng)上。熊宇杰回國后就開始帶研究生,目前在讀的有二十余人,在培養(yǎng)學(xué)生的過程中,他一直秉承中國傳統(tǒng)的“言傳身教”的理念,將做人與做學(xué)問的精神一起撒播給更多的青年學(xué)子。他認(rèn)為,每一個(gè)學(xué)生都具有不同的特點(diǎn),教師需要充分尊重他們的興趣,給予他們足夠的空間進(jìn)行自我探索。只有在大膽嘗試和勇于探索中,他們才會(huì)發(fā)現(xiàn)自己的興趣點(diǎn),找到從事科研的樂趣。“我在課程教學(xué)方面,也是秉承這樣一種理念去進(jìn)行的。從學(xué)生們的反饋來看,大家都很喜歡這種授課方式,也有所收獲。看著自己的學(xué)生從一個(gè)極具可塑性的學(xué)生成長為具有獨(dú)立工作能力的科技工作者,是一件無比愉悅的事情。”
在美國的6年,熊宇杰學(xué)會(huì)用國際視野來看待科學(xué)問題,也使他充分認(rèn)識(shí)到國際化人才培養(yǎng)的重要性。在培養(yǎng)學(xué)生時(shí),他采取“請(qǐng)進(jìn)來”、“送出去”兩種方式:一方面,邀請(qǐng)一些國際知名專家來學(xué)校做學(xué)術(shù)報(bào)告,讓學(xué)生更多地接觸到國際同行;另一方面,鼓勵(lì)學(xué)生參加國際會(huì)議或把學(xué)生通過各種國際交流項(xiàng)目送去國外進(jìn)行聯(lián)合培養(yǎng)。其中,英文論文寫作被熊宇杰視為國際化人才培養(yǎng)的重要環(huán)節(jié),因此他在這方面做了很多努力。“每當(dāng)有實(shí)驗(yàn)成果出來,我都會(huì)和學(xué)生進(jìn)行面對(duì)面的溝通,為他們搭建論文框架、理清寫作思路。執(zhí)筆的工作盡量讓他們自己完成。初稿出來之后,再由我來修改。”改論文是一件相當(dāng)費(fèi)時(shí)間的工作,熊宇杰仍然不遺余力,因?yàn)樵谒磥恚@一環(huán)節(jié)對(duì)培養(yǎng)國際化人才非常關(guān)鍵。
培養(yǎng)學(xué)生樹立對(duì)科學(xué)的興趣是熊宇杰長期的工作理念所致,在他看來,科研工作并非“苦行”,科研工作者也并非“苦行僧”。盡管科研是占據(jù)了熊宇杰大部分的時(shí)間,他還是會(huì)把工作時(shí)間和家庭生活合理分開,盡量把晚上和周末的時(shí)間留給家人。“通過平衡科研和生活之間的關(guān)系,工作才不會(huì)成為一種負(fù)擔(dān),而我也得以保持對(duì)科學(xué)的好奇、熱愛和堅(jiān)持。作為一名父親,孩子僅有一次的成長我不想缺席,與孩子的相處對(duì)我的工作也大有裨益。每一位學(xué)生對(duì)于我來說就像一張白紙,就如同我的孩子從幼兒園進(jìn)入小學(xué)需要師長的引導(dǎo)一樣,父親和導(dǎo)師這兩種角色其實(shí)有很多相似之處。”
除了陪伴家人,閑暇之余,熊宇杰也不忘和朋友們一起出行,他身邊的朋友同樣是一些青年科學(xué)家,放松與休息之余他們也會(huì)進(jìn)行學(xué)術(shù)討論,而且在這種自由的環(huán)境下,討論往往會(huì)產(chǎn)生更具創(chuàng)造性的想法。
總結(jié)自己的科研之路,熊宇杰認(rèn)為堅(jiān)持是成功的一大秘訣,“這一點(diǎn)在興趣的驅(qū)動(dòng)下是比較容易做到的,對(duì)化學(xué)的熱情一直是我前進(jìn)的動(dòng)力。另外,在學(xué)科不斷細(xì)分的趨勢(shì)下,交叉合作顯得尤為重要。因此,我會(huì)經(jīng)常和同行之間進(jìn)行友好、高效的交流。”與此同時(shí),熊宇杰還十分注重社會(huì)科普工作,在他看來,科普的必要性從近年來的很多事件就可以看出,近期發(fā)生的“我們恨化學(xué)”事件就是典型的缺乏對(duì)化學(xué)的正確認(rèn)識(shí)所造成的。通過社會(huì)科普,可以喚醒社會(huì)對(duì)科學(xué)的認(rèn)識(shí)和興趣。
來源:千人雜志 時(shí)間: 2016-01-29
熊宇杰 納米世界盡翱翔
熊宇杰,中科大化學(xué)與材料科學(xué)學(xué)院、合肥微尺度物質(zhì)科學(xué)國家實(shí)驗(yàn)室(籌)雙聘教授、博導(dǎo),首批國家“青年千人計(jì)劃”入選者,中科院“百人計(jì)劃”引進(jìn)人才。先后榮獲全國首屆“最美青年科技工作者”,美國2015年度Biomatik杰出教授獎(jiǎng)等榮譽(yù)。
富有親和力的笑容,是熊宇杰教授給記者最深刻的印象。日前,一個(gè)陽光燦爛的午后,記者如約來到中科大東區(qū)校園。剛走進(jìn)熊宇杰教授辦公室,他就迎了上來,熱情地與記者握手。如果不是提前查閱資料,你可能想不到頗有書卷氣的熊宇杰,早在32歲就入選首批國家“青年千人計(jì)劃”,36歲的他已是納米科技領(lǐng)域小有名氣的科學(xué)家。
熊宇杰是中科大少年班的畢業(yè)生,是個(gè)事業(yè)有成的“海歸”。在中科大謝毅院士門下讀碩士、博士,正式開啟了他的學(xué)術(shù)之路。年僅30歲,他就擔(dān)任華盛頓大學(xué)(圣路易斯)國家納米技術(shù)基礎(chǔ)設(shè)施組織首席研究員,并兼任納米中心管理主任。在美國,他有房有車,結(jié)婚生子,在外人看來,工作、生活都不錯(cuò)。 “但在美國,我一直沒有‘歸宿感’。 ”熊宇杰笑著說,中國始終是魂?duì)繅?mèng)繞的地方,對(duì)母校中科大,他更是有著特別的感情。
2010年,我國啟動(dòng) “千人計(jì)劃”項(xiàng)目,看到一些優(yōu)秀人才紛紛回國,熊宇杰心動(dòng)了。在導(dǎo)師謝毅建議下,他當(dāng)年就回國考察,并于次年成功入選國家首批“青年千人計(jì)劃”。 “中科大有一批杰出的中青年教師,大家合作交流很好,國家投入也多,我的科研進(jìn)展比國外同事要快得多。 ”熊宇杰坦言。
對(duì)于科研工作者來說,時(shí)間就是生命。自2011年回中科大任教后,熊宇杰立即著手建立自己的實(shí)驗(yàn)室和研究組。但這時(shí)“青年千人計(jì)劃”的科研經(jīng)費(fèi)還沒到位,學(xué)校陸續(xù)預(yù)借了400萬元給他購買儀器設(shè)備。
“納米世界,神奇驚艷,讓我著迷。 ”熊宇杰介紹,納米科技是世界前沿,是世界各國競(jìng)爭(zhēng)的熱點(diǎn)。納米材料具有傳統(tǒng)材料所不具備的奇異或反常的物理、化學(xué)特性,在極小的納米尺度下,固態(tài)金屬可以變得五顏六色,熔點(diǎn)會(huì)顯著降低。在納米世界,原本導(dǎo)電的銅加工到某個(gè)納米尺度就不再導(dǎo)電,絕緣的二氧化硅在某個(gè)納米尺度時(shí)則會(huì)變成導(dǎo)體。著名科學(xué)家錢學(xué)森曾預(yù)言:“納米左右和納米以下的結(jié)構(gòu)將是下一階段科技發(fā)展的特點(diǎn),會(huì)是一次技術(shù)革命,從而將是21世紀(jì)的又一次產(chǎn)業(yè)革命。 ”
神奇的納米世界,是熊宇杰愿意為之付出、為之努力的“圣地”。回國短短4年時(shí)間,聚焦納米復(fù)合材料設(shè)計(jì)與可控合成及催化性能研究,他先后在國際期刊上發(fā)表通訊作者論文36篇,其中包括《美國化學(xué)會(huì)志》《德國應(yīng)用化學(xué)》《先進(jìn)材料》等國際重要化學(xué)與材料科學(xué)期刊論文13篇。
自認(rèn)為做研究“不是苦行僧”的熊宇杰,這么短時(shí)間為何能取得如此驕人成績? “國內(nèi)科研合作一般比較困難,因?yàn)樯婕俺晒琶麊栴},但中科大學(xué)術(shù)氛圍很好,我們與相關(guān)領(lǐng)域教授和專家合作既高效又愉快。 ”熊宇杰寥寥數(shù)語,道出了成功的關(guān)鍵。
“沒有脾氣,對(duì)于科學(xué)問題,眼光獨(dú)到。 ”談起導(dǎo)師熊宇杰,正讀博二的劉東如是說。在他印象中,熊老師平時(shí)話不多,但一討論科學(xué)問題,往往滔滔不絕。 “他不僅對(duì)科研大方向把握很準(zhǔn),對(duì)小的細(xì)節(jié)也不放過。 ”目前,劉東已在著名刊物《德國應(yīng)用化學(xué)》上發(fā)表了1篇第一作者論文。去年,熊宇杰指導(dǎo)的一名博士生,榮獲中科院院長特別獎(jiǎng)。
【人物感言】
科學(xué)研究不能放過任何細(xì)節(jié),細(xì)節(jié)里可能蘊(yùn)藏著重要的科學(xué)問題。熊宇杰教授在實(shí)驗(yàn)室工作。
來源;安徽日?qǐng)?bào)
熊宇杰:“小宇宙”爆發(fā)大能量
熊宇杰
這位36歲的年輕教授,回國短短幾年,就在國際期刊上發(fā)表通訊作者論文36篇,并獲香港求是科技基金會(huì)杰出青年學(xué)者獎(jiǎng)、首屆中國化學(xué)會(huì)納米化學(xué)新銳獎(jiǎng)、“2015年度Biomatik杰出教授獎(jiǎng)”等榮譽(yù)。他的“小宇宙”正在爆發(fā)強(qiáng)盛的創(chuàng)新能量。
近日,中國科學(xué)技術(shù)大學(xué)教授熊宇杰榮獲美國華人化學(xué)與化學(xué)生物學(xué)教授協(xié)會(huì)頒發(fā)的“2015年度Biomatik杰出教授獎(jiǎng)”,該獎(jiǎng)項(xiàng)每年只頒發(fā)兩人。
這位年輕教授回國短短幾年時(shí)間,先后獲香港求是科技基金會(huì)杰出青年學(xué)者獎(jiǎng)、首屆中國化學(xué)會(huì)納米化學(xué)新銳獎(jiǎng)、中國化學(xué)會(huì)青年化學(xué)獎(jiǎng)、中國科學(xué)院優(yōu)秀導(dǎo)師獎(jiǎng)、首屆“最美青年科技工作者”等榮譽(yù)。
回國才有歸宿感
在熊宇杰36年的人生歷程中,他的成長仿佛正應(yīng)了“宇杰”二字——才華卓爾,天下俊杰。
早先,熊宇杰是中科大少年班的畢業(yè)生,后來在中科大謝毅院士門下攻讀碩士、博士。2004年,熊宇杰提前一年獲得中科大無機(jī)化學(xué)博士學(xué)位,赴美國華盛頓大學(xué)(西雅圖)做博士后研究,師從著名材料學(xué)家夏幼南教授。三年后,任美國伊利諾伊大學(xué)香檳分校材料與科學(xué)工程系助理研究員,在美國工程院和科學(xué)院院士John Rogers教授實(shí)驗(yàn)室工作。
由于突出的科研表現(xiàn),2009年,年僅30歲的熊宇杰擔(dān)任華盛頓大學(xué)(圣路易斯)國家納米技術(shù)基礎(chǔ)設(shè)施組織首席研究員,并兼任納米中心管理主任。
此時(shí)的他已結(jié)婚生子,在美國買了房子,工作和生活都順順當(dāng)當(dāng)。但熊宇杰內(nèi)心深處卻感覺空落落的,找不到“歸宿”感。恰在此時(shí),我國啟動(dòng)“千人計(jì)劃”項(xiàng)目。看到一些優(yōu)秀人才紛紛回國,熊宇杰也開始思考去留問題。但由于在外多年,他對(duì)國內(nèi)科研形勢(shì)不太了解,一時(shí)猶豫不決。謝毅教授獲悉后,建議他先回來看看。
“我2010年3月回母校,看到科研條件、發(fā)展態(tài)勢(shì)都很好,感到在國內(nèi)也能做出好成果,就決定回來了。”熊宇杰告訴《中國科學(xué)報(bào)》記者。同年年底,他入選中科院“百人計(jì)劃”,次年3月到中國科大報(bào)到,8月入選國家首批“青年千人計(jì)劃”。
熊宇杰的科研領(lǐng)域是面向能源問題的納米復(fù)合材料設(shè)計(jì)與可控合成及催化性能研究。回國后,他立即著手組建實(shí)驗(yàn)室和研究組。但這時(shí)“青年千人”的科研經(jīng)費(fèi)還沒到位,學(xué)校陸續(xù)預(yù)借了400萬元給他購買儀器設(shè)備。只半年多時(shí)間,實(shí)驗(yàn)室初步建成。
“科大有一批水平很高的中青年教師,大家合作交流很好,國家投入也多,我的科研進(jìn)展比國外同事要快得多。”熊宇杰說,對(duì)此他有一種“滿足感”。
交叉合作結(jié)碩果
有了實(shí)驗(yàn)室這個(gè)平臺(tái)之后的熊宇杰更顯如虎添翼。不算回國第一年建實(shí)驗(yàn)室的時(shí)間,僅用三年時(shí)間,他就在國際期刊上發(fā)表通訊作者論文36篇,其中包括《美國化學(xué)會(huì)志》《德國應(yīng)用化學(xué)》《先進(jìn)材料》等國際重要化學(xué)與材料科學(xué)期刊論文13篇。真可謂“小宇宙爆發(fā)”。
自認(rèn)為做研究“并不算刻苦”的熊宇杰,何以在短時(shí)間取得如此驕人成績?他告訴記者,“首先是學(xué)校支持多,實(shí)驗(yàn)室建得快”。其次,得到了學(xué)校很多資深教授的支持和指導(dǎo),經(jīng)常和謝毅、羅毅這些國際知名學(xué)者探討科學(xué)問題,逐步領(lǐng)會(huì)到跨領(lǐng)域科學(xué)研究的重要性。“第三,主要是認(rèn)識(shí)了一批研究興趣相投的教授,各種合作方向的老師都能找到”。
回國后,熊宇杰與江俊、張群、武曉君、宋禮等校內(nèi)年輕教師交往較多,江俊和武曉君擅長理論模擬,張群等擅長微觀過程的先進(jìn)表征。他們常在食堂用餐或業(yè)余時(shí)間聊天,擦出“思想火花”,于是就開展“精準(zhǔn)制備-理論模擬-先進(jìn)表征”三位一體的交叉學(xué)科合作研究。
“盡管我本科學(xué)的是化學(xué)物理專業(yè),屬于交叉學(xué)科,但對(duì)一些原理的理解還是膚淺。與他們經(jīng)常討論,不斷加深理解,這對(duì)我設(shè)計(jì)材料很有好處。”熊宇杰說,材料設(shè)計(jì)好后,再請(qǐng)做表征的老師來驗(yàn)證,這樣更容易產(chǎn)生設(shè)計(jì)和驗(yàn)證的方法。采取這種交叉研究,前不久他們?cè)谟始一瘜W(xué)會(huì)《化學(xué)會(huì)評(píng)論》上發(fā)表了一篇綜述論文。
“國內(nèi)科研合作一般比較困難,因?yàn)樯婕俺晒琶麊栴},但科大的學(xué)術(shù)氛圍不錯(cuò),我們合作得很高效、愉快。”熊宇杰說。
平和細(xì)心的導(dǎo)師
極富親和力,是作為導(dǎo)師的熊宇杰給學(xué)生最深刻的印象。
讀博二的劉東,已在《德國應(yīng)用化學(xué)》上發(fā)表了一篇第一作者論文,目前還有兩篇國際論文準(zhǔn)備投稿。在他印象中,熊老師平時(shí)話不多,但一討論科學(xué)問題,往往滔滔不絕。“他不僅對(duì)科研大方向把握的很準(zhǔn),對(duì)小的細(xì)節(jié)也不放過,他總是說細(xì)節(jié)可能蘊(yùn)藏著重要的科學(xué)問題”。尤其讓劉東感到高興的是,熊老師為人很平和,“從沒發(fā)過脾氣,與他交流比較輕松,敢于大膽說出自己不成熟的想法。”
熊宇杰回國當(dāng)年即開始帶研究生,去年畢業(yè)的一名博士生獲中科院院長特別獎(jiǎng),今年又將有4名博士和一名碩士研究生畢業(yè),目前在讀的十余人,他們都表現(xiàn)出較強(qiáng)的創(chuàng)新能力,原創(chuàng)成果不斷涌現(xiàn)。
說起來,熊宇杰指導(dǎo)研究生也經(jīng)歷了一個(gè)過程。回國頭兩年,為加快進(jìn)展,設(shè)計(jì)實(shí)驗(yàn)流程、分析數(shù)據(jù)、寫論文,熊宇杰往往親力親為。但后來發(fā)現(xiàn),這對(duì)學(xué)生的能力培養(yǎng)不利,于是就花更多時(shí)間與學(xué)生討論交流,更多的讓他們動(dòng)手。
研究生入學(xué)伊始,熊宇杰都要與他們一一面談,了解其興趣愛好,然后確定研究方向和課題,介紹相關(guān)前沿文獻(xiàn)讓他們研讀。課題開始簡(jiǎn)單,等做出成果、學(xué)生的興趣和自信增強(qiáng)后,逐步加大難度。
熊宇杰和學(xué)生們交流、互動(dòng)有一個(gè)規(guī)定安排,叫“兩會(huì)”——每周一、周三上午是一對(duì)一的見面會(huì),每次安排4~5名同學(xué)依次面談,及時(shí)了解學(xué)生的科研進(jìn)展,討論存在的困難和問題,以及下一步工作如何開展;組會(huì)則是安排在每周二晚上,所有研究生一起參加,一次4~5人依次用PPT做報(bào)告,介紹自己課題的背景、研究進(jìn)展、潛在的問題等,然后大家提出問題,進(jìn)行討論。熊宇杰每次都參加討論,點(diǎn)評(píng)報(bào)告,提出改進(jìn)意見,“目的是培養(yǎng)學(xué)生的表達(dá)交流能力,因?yàn)樽龊脤W(xué)術(shù)報(bào)告是今后從事學(xué)術(shù)研究的必備素質(zhì)”。
英文論文寫作是國際化人才培養(yǎng)的重要環(huán)節(jié)。實(shí)驗(yàn)成果出來后,熊宇杰講清寫作思路和框架,盡量讓學(xué)生拿初稿,然后他來修改。“盡管改起來很費(fèi)時(shí)間,有的甚至要改幾十稿,但對(duì)培養(yǎng)國際化人才很有必要”。
來源:中國科學(xué)報(bào) 2015年06月12日
中科大教授熊宇杰:回國才有“歸宿感”
中科大熊宇杰教授榮近日獲美國華人化學(xué)與化學(xué)生物學(xué)教授協(xié)會(huì)頒發(fā)的“2015年度Biomatik杰出教授獎(jiǎng)”。據(jù)悉,該獎(jiǎng)項(xiàng)每年只頒發(fā)給兩人。
25日,這位36歲的年輕教授向媒體透露,回國短短幾年時(shí)間,先后獲香港求是科技基金會(huì)杰出青年學(xué)者獎(jiǎng)、首屆中國化學(xué)會(huì)納米化學(xué)新銳獎(jiǎng)、中國化學(xué)會(huì)青年化學(xué)獎(jiǎng)、中國科學(xué)院優(yōu)秀導(dǎo)師獎(jiǎng)、首屆“最美青年科技工作者”等榮譽(yù)的秘訣,談自己的“歸宿感”。
回國才有了“歸宿感”
2004年,熊宇杰提前一年獲得中科大無機(jī)化學(xué)博士學(xué)位,赴美國華盛頓大學(xué)(西雅圖)做博士后研究,師從著名材料學(xué)家夏幼南教授。三年后,任美國伊利諾伊大學(xué)香檳分校材料與科學(xué)工程系助理研究員,在美國工程院和科學(xué)院院士JohnRogers教授實(shí)驗(yàn)室工作。由于突出的科研表現(xiàn),2009年,年僅30歲的他就擔(dān)任華盛頓大學(xué)(圣路易斯)國家納米技術(shù)基礎(chǔ)設(shè)施組織首席研究員,并兼任納米中心管理主任。
當(dāng)時(shí),熊宇杰已結(jié)婚生子,在美國工作生活都不錯(cuò)。但他內(nèi)心深處,一直有種沒有“歸宿”的感覺。恰好,中國啟動(dòng)“千人計(jì)劃”項(xiàng)目,看到一些優(yōu)秀人才紛紛回國,熊宇杰開始思考去留問題。由于在外多年,對(duì)國內(nèi)科研形勢(shì)不太了解,一時(shí)猶豫不決。
“我2010年3月回母校,看到科研條件、發(fā)展態(tài)勢(shì)都很好,感到在國內(nèi)也能做出好成果,就決定回來了。”熊宇杰說。當(dāng)年底,他入選中科院“百人計(jì)劃”,次年3月到中科大報(bào)到,8月入選國家首批“青年千人計(jì)劃”。
回國后,熊宇杰立即著手建實(shí)驗(yàn)室和研究組。但這時(shí)“青年千人”的科研經(jīng)費(fèi)還沒到位,學(xué)校陸續(xù)預(yù)借了400萬元人民幣給他購買儀器設(shè)備。只半年多時(shí)間,實(shí)驗(yàn)室初步建成。
看到自己科研進(jìn)展迅速,熊宇杰說,對(duì)此他有一種“滿足感”。
“三位一體”的交叉合作
熊宇杰的科研領(lǐng)域是面向能源問題的納米復(fù)合材料設(shè)計(jì)與可控合成及催化性能研究。刨去回國第一年建實(shí)驗(yàn)室,僅三年時(shí)間,他在國際期刊上發(fā)表通訊作者論文36篇,其中包括《美國化學(xué)會(huì)志》、《德國應(yīng)用化學(xué)》、《先進(jìn)材料》等國際重要化學(xué)與材料科學(xué)期刊論文13篇。
在他看來,這與學(xué)校、以及很多資深教授的支持和指導(dǎo)分不開,他常和謝毅、羅毅這些國際知名學(xué)者探討科學(xué)問題,逐步領(lǐng)會(huì)到跨領(lǐng)域科學(xué)研究的重要性。
此外,在中科大“各種合作方向的老師都能找到”,熊宇杰與江俊、張群等校內(nèi)年輕教師交往較多。他們常在食堂用餐或業(yè)余時(shí)間聊天,擦出“思想火花”,于是就開展“精準(zhǔn)制備-理論模擬-先進(jìn)表征”三位一體的交叉學(xué)科合作研究。他說,采取這種交叉研究,前不久他們?cè)谟始一瘜W(xué)會(huì)《化學(xué)會(huì)評(píng)論》上發(fā)表了一篇綜述論文。
來源:中國新聞網(wǎng) 2015年05月25日17:32
中國科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開放共享平臺(tái)(簡(jiǎn)稱:中國科技創(chuàng)新人物云平臺(tái))免責(zé)聲明:
1、中國科技創(chuàng)新人物云平臺(tái)是:“互聯(lián)網(wǎng)+科技創(chuàng)新人物”的大型云平臺(tái),平臺(tái)主要發(fā)揮互聯(lián)網(wǎng)在生產(chǎn)要素配置中的優(yōu)化和集成作用,將互聯(lián)網(wǎng)與科技創(chuàng)新人物的創(chuàng)新成果深度融合于經(jīng)濟(jì)社會(huì)各領(lǐng)域之中,提升實(shí)體經(jīng)濟(jì)的創(chuàng)新力和生產(chǎn)力,形成更廣泛的以互聯(lián)網(wǎng)為基礎(chǔ)設(shè)施和實(shí)現(xiàn)工具的經(jīng)濟(jì)發(fā)展新形態(tài),實(shí)現(xiàn)融合創(chuàng)新,為大眾創(chuàng)業(yè),萬眾創(chuàng)新提供智力支持,為產(chǎn)業(yè)智能化提供支撐,加快形成經(jīng)濟(jì)發(fā)展新動(dòng)能,促進(jìn)國民經(jīng)濟(jì)提質(zhì)增效升級(jí)。
2、中國科技創(chuàng)新人物云平臺(tái)暨“互聯(lián)網(wǎng)+”科技創(chuàng)新人物開放共享平臺(tái)內(nèi)容來源于互聯(lián)網(wǎng),信息都是采用計(jì)算機(jī)手段與相關(guān)數(shù)據(jù)庫信息自動(dòng)匹配提取數(shù)據(jù)生成,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,如果發(fā)現(xiàn)信息存在錯(cuò)誤或者偏差,歡迎隨時(shí)與我們聯(lián)系,以便進(jìn)行更新完善。
3、如果您認(rèn)為本詞條還有待完善,請(qǐng)編輯詞條。
4、如果發(fā)現(xiàn)中國科技創(chuàng)新人物云平臺(tái)提供的內(nèi)容有誤或轉(zhuǎn)載稿涉及版權(quán)等問題,請(qǐng)及時(shí)向本站反饋,網(wǎng)站編輯部郵箱:kjcxac@126.com。
5、中國科技創(chuàng)新人物云平臺(tái)建設(shè)中盡最大努力保證數(shù)據(jù)的真實(shí)可靠,但由于一些信息難于確認(rèn)不可避免產(chǎn)生錯(cuò)誤。因此,平臺(tái)信息僅供參考,對(duì)于使用平臺(tái)信息而引起的任何爭(zhēng)議,平臺(tái)概不承擔(dān)任何責(zé)任。